13.在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=$\sqrt{3}$,c=$\sqrt{2}$,C=$\frac{π}{4}$,則角B=$\frac{5π}{12}$或$\frac{π}{12}$.

分析 利用正弦定理求得sinA的值,可得A的值,再利用三角形內(nèi)角和公式求得B的值.

解答 解:△ABC中,∵a=$\sqrt{3}$,c=$\sqrt{2}$,C=$\frac{π}{4}$,則由正弦定理可得$\frac{a}{sinA}$=$\frac{c}{sinC}$,即 $\frac{\sqrt{3}}{sinA}$=$\frac{\sqrt{2}}{sin\frac{π}{4}}$,sinA=$\frac{\sqrt{3}}{2}$.
結(jié)合a>c,可得A>C,∴A=$\frac{π}{3}$,或A=$\frac{2π}{3}$.
當(dāng)A=$\frac{π}{3}$ 時(shí),B=π-A-C=$\frac{5π}{12}$;當(dāng)A=$\frac{2π}{3}$時(shí),B=π-A-C=$\frac{π}{12}$.
綜上可得,B=$\frac{5π}{12}$,或B=$\frac{π}{12}$.
故答案為:$\frac{5π}{12}$或$\frac{π}{12}$.

點(diǎn)評 本題主要考查正弦定理,三角形內(nèi)角和公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的偶函數(shù),當(dāng)x>0時(shí),f(x)=32x+log5x,則f(-$\frac{1}{5}$)等于( 。
A.-1B.3C.1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=-2+loga(x+3)(a>0且a≠1),g(x)=($\frac{1}{2}$)x-1
(1)函數(shù)y=f(x)的圖象恒過定點(diǎn)A,求A點(diǎn)坐標(biāo);
(2)若函數(shù)F(x)=f(x)-g(x)的圖象過點(diǎn)(-1,-5),證明:方程F(x)=0在x∈(1,5)上有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某市2010年至2016年新開樓盤的平均銷售價(jià)格y(單位:千元/平米)的統(tǒng)計(jì)數(shù)據(jù)如表:
年份 2010  20112012  20132014  20152016 
 年份代號x 1 5 6
 銷售價(jià)格y 3 3.4 3.74.5  4.95.3 
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該市新開樓盤平均銷售價(jià)格的變化情況,并預(yù)測該市2018年新開樓盤的平均銷售價(jià)格.
附:參考數(shù)據(jù)及公式:$\sum_{i=1}^{7}{x}_{i}{y}_{i}=137.2$,$\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列類比推理正確的是(  )
A.由c(a+b)=ca+cb類比,得到loga(x+y)=logax+logay
B.由(ab)c=a(bc)類比,得到($\overrightarrow{a}•\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow•\overrightarrow{c}$)
C.由(a+b)+c=a+(b+c)類比,得到(xy)z=x(yz)
D.由(ab)n=anbn類比,得到(x+y)n=xn+yn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知以下四個(gè)結(jié)論:
①函數(shù)y=tanx圖象的一個(gè)對稱中心為($\frac{π}{2}$,0);
②函數(shù)y=|sinx+1|的最小正周期為π;
③y=sin(2x+$\frac{π}{3}$)的表達(dá)式可以改寫為f(x)=cos($\frac{7}{6}$π-2x);
④若A+B=$\frac{π}{4}$,則(1+tanA)(1+tanB)=2.
其中,正確的結(jié)論是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$|\overrightarrow a|=4,\overrightarrow b=(-1,\sqrt{3})$.
(1)若$\overrightarrow a∥\overrightarrow b$,求$\overrightarrow a$的坐標(biāo);
(2)若$\overrightarrow a$與$\overrightarrow b$的夾角為120°,求$|\overrightarrow a-\overrightarrow b|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用電腦每次可以從區(qū)間(0,1)內(nèi)自動生成一個(gè)實(shí)數(shù),且每次生成每個(gè)實(shí)數(shù)都是等可能性的,若用該電腦連續(xù)生成3個(gè)實(shí)數(shù),則這3個(gè)實(shí)數(shù)都大于$\frac{1}{3}$的概率為(  )
A.$\frac{1}{27}$B.$\frac{2}{3}$C.$\frac{8}{27}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(4,m),$\overrightarrow$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=5.

查看答案和解析>>

同步練習(xí)冊答案