3.已知數(shù)列{an}是遞增等差數(shù)列,且a1+a4=5,a2a3=6,設(shè)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,則數(shù)列{bn}的前10項和為(  )
A.$\frac{9}{10}$B.$\frac{11}{10}$C.$\frac{9}{11}$D.$\frac{10}{11}$

分析 利用等差數(shù)列的通項公式、“裂項求和”方法即可得出.

解答 解:設(shè)遞增等差數(shù)列{an}的公差為d>0,∵a1+a4=5,∴a2+a3=5,又a2a3=6,
解得a2=2,a3=3,∴d=3-2=1,a1=2-1=1.
∴an=1+(n-1)=n.
∴${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
則數(shù)列{bn}的前10項和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{10}-\frac{1}{11})$=1-$\frac{1}{11}$=$\frac{10}{11}$.
故選:D.

點評 本題考查了等差數(shù)列的通項公式及其單調(diào)性、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在空間直角坐標系中,點A(1,3,-2),B(-2,3,2),則A,B兩點間的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≥4}\\{x-y≤2}\\{3y-x≤4}\end{array}}\right.$,則$\frac{y}{x}$的最小值為( 。
A.1B.$\frac{1}{3}$C.$\frac{3}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示,已知平面四邊形ABCD為凸四邊形(凸四邊形即任取平面四邊形一邊所在直線,其余各邊均在此直線的同側(cè)),且AB=1,BC=3,CD=4,DA=2,則平面四邊形ABCD面積的最大值為$2\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.雙曲線$\frac{x^2}{2}-\frac{y^2}{4}=1$漸近線的斜率為( 。
A.$±\frac{{\sqrt{2}}}{2}$B.$±\frac{1}{2}$C.$±\sqrt{2}$D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知acosB+bcosA=2cosC.
(1)求角C的值;
(2)若a+b=4,c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題p:A1,A2是互斥事件:命題q:A1,A2是對立事件,那么( 。
A.p是q的必要但不充分條件
B.p是q的充分但不必要條件
C.p是q的充要條件
D.p既不是q的充分條件,也不q的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋物線的準線方程是$y=\frac{1}{2}$,則其標準方程是( 。
A.y2=2xB.x2=-2yC.y2=-xD.x2=-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=( 。
A.-1B.1C.-4D.4

查看答案和解析>>

同步練習(xí)冊答案