18.雙曲線$\frac{x^2}{2}-\frac{y^2}{4}=1$漸近線的斜率為( 。
A.$±\frac{{\sqrt{2}}}{2}$B.$±\frac{1}{2}$C.$±\sqrt{2}$D.±2

分析 求出雙曲線的漸近線方程,然后推出結(jié)果.

解答 解:雙曲線$\frac{x^2}{2}-\frac{y^2}{4}=1$漸近線方程為:y=$±\sqrt{2}$x,
雙曲線$\frac{x^2}{2}-\frac{y^2}{4}=1$漸近線的斜率為:$±\sqrt{2}$.
故選:C.

點評 本題考查雙曲線的簡單性質(zhì)的應用,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,給出的是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2016}$的值的程序框圖,其中判斷框內(nèi)可填入的是( 。
A.i≤2 021?B.i≤2 019?C.i≤2 017?D.i≤2 015?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=sinxcosx+2,x∈R.
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$,則目標函數(shù)z=x+y的最小值為( 。
A.5B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求角B的值;
(2)若a+c=6,且△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求邊b的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an}是遞增等差數(shù)列,且a1+a4=5,a2a3=6,設${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,則數(shù)列{bn}的前10項和為(  )
A.$\frac{9}{10}$B.$\frac{11}{10}$C.$\frac{9}{11}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.命題“?x∈R,使得x2+x+1>0”的否定是( 。
A.?x0∈R,使得x02+x0+1>0B.?x∈R,使得x2+x+1>0
C.?x∈R,使得x2+x+1≤0D.?x0∈R,使得x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤6;
(2)若不等式6m2-4m<f(x)對任意x∈R都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設點A,B的坐標分別為(-6,0),(6,0),直線AM,BM相交于點M,且它們的斜率之積是$\frac{4}{9}$,則動點M的軌跡加上A,B兩點所表示的曲線是( 。
A.B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

同步練習冊答案