(本小題滿分12分)
如圖,三棱柱中,
,為的中點(diǎn),且.
(1)求證:∥平面;
(2)求與平面所成角的大。
(1)證明線面平行,只要通過線面平行的判定定理來證明即可。
(2)∠.
【解析】
試題分析:⑴證明:如圖一,連結(jié)與交于點(diǎn),連結(jié).
在△中,、為中點(diǎn),∴∥. (4分)
又平面,平面,∴∥平面. (6分)
圖一 圖二 圖三
⑵證明:(方法一)如圖二,∵為的中點(diǎn),∴.
又,,∴平面. (8分)
取的中點(diǎn),又為的中點(diǎn),∴、、平行且相等,
∴是平行四邊形,∴、平行且相等.
又平面,∴平面,∴∠即所求角. (10分)
由前面證明知平面,∴,
又,,∴平面,∴此三棱柱為直棱柱.
設(shè)∴,,∠=. (12分)
(方法二)如圖三,∵為的中點(diǎn),∴.
又,,∴平面. (8分)
取的中點(diǎn),則∥,∴平面.
∴∠即與平面所成的角. (10分)
由前面證明知平面,∴,
又,,∴平面,∴此三棱柱為直棱柱.
設(shè)∴,,∴∠. (12分)
考點(diǎn):線面平行,線面角
點(diǎn)評(píng):主要是考查了線面角的求解,以及線面平行的判定定理的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com