用黑、藍(lán)2種顏色給如圖所示的笑臉涂色,每個圖形只能涂一種顏色,則兩只眼睛(即圖中A、B所示的區(qū)域)涂同種顏色而鼻子和嘴巴涂不同顏色的概率為( 。
A、
1
8
B、
1
4
C、
1
2
D、
3
8
考點(diǎn):古典概型及其概率計算公式
專題:計算題,概率與統(tǒng)計
分析:由于用黑、藍(lán)2種顏色給如圖所示的笑臉涂色,每個圖形只能涂一種顏色,共有16種方法,兩只眼睛(即圖中A、B所示的區(qū)域)涂同種顏色而鼻子和嘴巴涂不同顏色,共有8種方法,即可求出兩只眼睛(即圖中A、B所示的區(qū)域)涂同種顏色而鼻子和嘴巴涂不同顏色的概率.
解答: 解:由于用黑、藍(lán)2種顏色給如圖所示的笑臉涂色,每個圖形只能涂一種顏色,共有16種方法,
兩只眼睛(即圖中A、B所示的區(qū)域)涂同種顏色而鼻子和嘴巴涂不同顏色,共有8種方法,
∴兩只眼睛(即圖中A、B所示的區(qū)域)涂同種顏色而鼻子和嘴巴涂不同顏色的概率為
1
2

故選:C.
點(diǎn)評:本題考查等可能事件的概率,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1},B={x|x2-2ax+a2-
a
2
=0}
(1)若A∪B=B,求實數(shù)a所滿足的條件;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2-(1+a)x(x>0),其中a為實數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)≥0對定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)證明:
1
ln(m+1)
+
1
ln(m+2)
+…+
1
ln(m+n)
n
m(m+n)
,對任意的正整數(shù)m,n成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
2
sin2x-
1
2
cos2x-lgx的零點(diǎn)個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商店開張,采用摸獎形式吸引顧客,暗箱中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,進(jìn)入商店的人都可以從箱中摸取兩球,若兩球顏色為一白一黑即可領(lǐng)取小禮品,則能得到小禮品的概率等于( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足an=3an-1+2(n≥2,n∈N*),且a1=2,bn=log3(an+1).
(1)證明:數(shù)列{an+1}為等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
為非零向量,|
b
|=2|
a
|,兩組向量
x1
x2
,
x3
x4
y1
,
y2
,
y3
,
y4
均由2個
a
和2個
b
排列而成,若
x1
y1
+
x2
y2
+
x3
y3
+
x4
y4
所有可能取值中的最小值為4|
a
|2,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)用分析法證明:
3
-
2
6
-
5

(2)已知a>0,b>0且a+b>2,求證:
1+b
a
1+a
b
中至少有一個小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)說出下列偽代碼表示的算法目的.

(2)根據(jù)偽代碼,寫出執(zhí)行結(jié)果.
算法開始

輸出x的值;
算法結(jié)束.

查看答案和解析>>

同步練習(xí)冊答案