19.設(shè)f(x)是定義在(-π,0)∪(0,π)的奇函數(shù),其導函數(shù)為f′(x),且$f({\frac{π}{2}})=0$,當x∈(0,π)時,f′(x)sinx-f(x)cosx<0,則關(guān)于x的不等式$f(x)<2f({\frac{π}{6}})sinx$的解集為( 。
A.$({-\frac{π}{6},0})∪({0,\frac{π}{6}})$B.$({-\frac{π}{6},0})∪({\frac{π}{6},π})$C.$({-\frac{π}{6},0})∪({\frac{π}{6},\frac{π}{2}})$D.$({-π,-\frac{π}{6}})∪({0,\frac{π}{6}})$

分析 根據(jù)條件構(gòu)造函數(shù)$g(x)=\frac{f(x)}{sinx}$,求函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)函數(shù)單調(diào)性之間的關(guān)系解不等式即可.

解答 解:令$g(x)=\frac{f(x)}{sinx}$,
則g′(x)=$\frac{f′(x)sinx-f(x)cosx}{sin^2x}$,
∵當x∈(0,π)時,f′(x)sinx-f(x)cosx<0,
∴g′(x)=$\frac{f′(x)sinx-f(x)cosx}{sin^2x}$<0,
即g(x)在(0,π)上遞減,在(-π,0)上遞增,
當x∈(0,π)時,$g(x)<g(\frac{π}{6})⇒\frac{π}{6}<x<π$;
當x∈(-π,0)時,$g(x)>g(-\frac{π}{6})⇒-\frac{π}{6}<x<0$;
故選B.

點評 本題主要考查不等式的求解,根據(jù)條件造函數(shù)$g(x)=\frac{f(x)}{sinx}$,求函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知2Sn=nan+2(n≥2),a2=2,求an的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,
(1)求證:直線BC1∥平面D1AC;
(2)求直線BC1到平面D1AC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(4,0),且其漸近線與圓(x-2)2+y2=3相切,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,點P在正方體ABCD-A1B1C1D1的表面上運動,且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內(nèi)展開,那么動點P的軌跡在展開圖中的形狀是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.過點P(1,0)作拋物線y=$\sqrt{x-2}$的切線,求該切線與拋物線y=$\sqrt{x-2}$及x軸所圍平面圖形繞x軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知sin(π+α)=$\frac{4}{5}$,則sin($\frac{π}{2}$+2α)=( 。
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.-$\frac{24}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球4個,白球3個,藍球3個.現(xiàn)從中任取出一球確定顏色后放回盒子里,再取下一個球.重復以上操作,最多取3次,過程中如果取出藍色球則不再取球.求:
(Ⅰ)最多取兩次就結(jié)束的概率;
(Ⅱ)整個過程中恰好取到2個白球的概率;
(Ⅲ)設(shè)取球的次數(shù)為隨機變量X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{x+1,x≤0}\end{array}\right.$,g(x)=log2x,若f(a)+f[g(a)]=0,則實數(shù)a的值等于( 。
A.-1B.-2C.1D.2

查看答案和解析>>

同步練習冊答案