4.對(duì)于任意非零實(shí)數(shù)x1,x2,函數(shù)f(x)滿足f(x1•x2)=f(x1)+f(x2),
(1)求f(-1)的值;
(2)求證:f(x)是偶函數(shù);
(3)已知f(x)在(0,+∞)上是增函數(shù),若f(2x-1)<f(x),求x取值范圍.

分析 (1)函數(shù)f(x)滿足f(x1•x2)=f(x1)+f(x2),取x1=x2=1,即可解得f(1).取x1=x2=-1,則f(1)=f(-1)+f(-1),解得f(-1).
(2)令x1=x∈R,x2=-1,可得f(-x)=f(-1)+f(x)=f(x),即可證明.
(3)由f(x)在(0,+∞)上是增函數(shù),又f(x)是R上的偶函數(shù),f(2x-1)<f(x),可得:|2x-1|<|x|,解出即可得出.

解答 (1)解:∵函數(shù)f(x)滿足f(x1•x2)=f(x1)+f(x2),取x1=x2=1,∴f(1×1)=f(1)+f(1),解得f(1)=0.
取x1=x2=-1,則f(1)=f(-1)+f(-1),解得f(-1)=0.
(2)證明:令x1=x∈R,x2=-1,則f(-x)=f(-1)+f(x)=f(x),∴f(x)是R上的偶函數(shù).
(3)解:∵f(x)在(0,+∞)上是增函數(shù),又f(x)是R上的偶函數(shù),f(2x-1)<f(x),
∴|2x-1|<|x|,∴(2x-1)2<x2,化為:3x2-4x+1<0,解得$\frac{1}{3}<x<1$.
∴x取值范圍是$(\frac{1}{3},1)$.

點(diǎn)評(píng) 本題考查了抽象函數(shù)的奇偶性單調(diào)性、不等式的解法、方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=m(x-2m)(x+m+3),g(x)=x-1,滿足條件:?x∈R,f(x)<0或g(x)<0成立,則m的取值范圍是(-4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面哪一個(gè)判斷是正確的( 。
A.在區(qū)間(-3,1)內(nèi)y=f(x)是增函數(shù)B.在區(qū)間(1,3)內(nèi)y=f(x)是減函數(shù)
C.在區(qū)間(4,5)內(nèi)y=f(x)是增函數(shù)D.在x=2時(shí),y=f(x)取得極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x∈R|ax2-2x+1=0}
(1)若集合A中只有一個(gè)元素,用列舉法寫出集合A;
(2)若集合A中至多只有一個(gè)元素,求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在下列各量之間存在相關(guān)關(guān)系的是( 。
①正方體的體積與棱長(zhǎng)間的關(guān)系;
②一塊農(nóng)田的水稻產(chǎn)量與施肥量之間的關(guān)系;
③人的身高與年齡;
④森林中的同一種樹木,其橫斷面直徑與高度之間的關(guān)系;
⑤某戶家庭用電量與電價(jià)間的關(guān)系.
A.②③B.③④C.④⑤D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù),又在(0,+∞)上是單調(diào)減函數(shù)的是(  )
A.y=-2|x|B.$y={x^{\frac{1}{2}}}$C.y=ln|x+1|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=log2(-x2-2x+8).
(1)求f(x)的定義域和值域; 
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.“[x]”表示不超過實(shí)數(shù)x的最大的整數(shù),如[1.3]=1,[2]=2,[-2.3]=-3,又記{x}=x-[x],已知函數(shù)f(x)=[x]-{x},x∈R,給出以下命題:
①f(x)的值域?yàn)镽;
②f(x)在區(qū)間[k,k+1],k∈Z上單調(diào)遞減;
③f(x)的圖象關(guān)于點(diǎn)(1,0)中心對(duì)稱;
④函數(shù)|f(x)|為偶函數(shù).
其中所有正確命題的序號(hào)是①(將所有正確命題序號(hào)填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為2,A,F(xiàn)分別是它的左頂點(diǎn)和右焦點(diǎn),點(diǎn)B的坐標(biāo)為(0,b),則cos∠ABF的值為$\frac{{\sqrt{7}}}{14}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案