已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
(1)∵f(x)是奇函數(shù),
∴f(0)=0,即=0,解得b=1,從而有f(x)=.
又由f(1)=-f(-1)知
解得a=2.經(jīng)檢驗(yàn)a=2適合題意,
∴所求a,b的值分別為2,1.
(2)解法1:由(1)知f(x)=
由上式易知f(x)在(-∞,+∞)上為減函數(shù).
又因f(x)是奇函數(shù),
從而不等式f(t2-2t)+f(2t2-k)<0,等價(jià)于
f(t2-2t)<-f(2t2-k)=f(-2t2+k).
因f(x)是減函數(shù),由上式推得t2-2t>-2t2+k.
即對(duì)一切t∈R有3t2-2t-k>0.
從而判別式Δ=4+12k<0,解得k<-.
解法2:由(1)知f(x)=,又由題設(shè)條件得
即(22t2-k+1+2)(-2t2-2t+1)+(2t2-2t+1+2)·(-22t2-k+1)<0.
整理得23t2-2t-k>1,因底數(shù)2>1,故3t2-2t-k>0.
上式對(duì)一切t∈R均成立,從而判別式Δ=4+12k<0,解得k<-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)定義在R上,它的圖象關(guān)于直線x=1對(duì)稱,且當(dāng)x≥1時(shí),f(x)=3x-1,則有( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)y=4x-3·2x+3的定義域?yàn)榧?i>A,值域?yàn)閇1,7],集合B=(-∞,0]∪[1,2],則集合A與集合B的關(guān)系為( )
A.AB B.A=B
C.BA D.A⊆B
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)a,b,c為均不等于1的正實(shí)數(shù),則下列等式中恒成立的是( )
A.logab·logcb=logca
B.logab·logca=logcb
C.loga(bc)=logab·logac
D.loga(b+c)=logab+logac
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)y=f(x)是最小正周期為2的偶函數(shù),它在區(qū)間[0,1]上的圖像如圖中所示線段AB,則在區(qū)間[1,2]上,f(x)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當(dāng)a=-2時(shí),求f(x)的最值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);
(3)當(dāng)a=1時(shí),求f(|x|)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com