設(shè)函數(shù)y=f(x)是最小正周期為2的偶函數(shù),它在區(qū)間[0,1]上的圖像如圖中所示線段AB,則在區(qū)間[1,2]上,f(x)=________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知a>b,函數(shù)f(x)=(x-a)·(x-b)的圖像如圖所示,則函數(shù)g(x)=loga(x+b)的圖像可能為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=f(x)的定義域?yàn)镽,并對(duì)一切實(shí)數(shù)x,都滿足f(2+x)=f(2-x).
(1)證明:函數(shù)y=f(x)的圖像關(guān)于直線x=2對(duì)稱;
(2)若f(x)是偶函數(shù),且x∈[0,2]時(shí),f(x)=2x-1,求x∈[-4,0]時(shí)的f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若直角坐標(biāo)平面內(nèi)的兩個(gè)不同點(diǎn)M,N滿足條件:
①M,N都在函數(shù)y=f(x)的圖象上;
②M,N關(guān)于原點(diǎn)對(duì)稱.
則稱點(diǎn)對(duì)[M,N]為函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”.(注:點(diǎn)對(duì)[M,N]與[N,M]為同一“友好點(diǎn)對(duì)”)
已知函數(shù)f(x)=此函數(shù)的“友好點(diǎn)對(duì)”有( )
A.0對(duì) B.1對(duì)
C.2對(duì) D.3對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某公司欲投資13億元進(jìn)行項(xiàng)目開發(fā),現(xiàn)有以下6個(gè)項(xiàng)目可供選擇.
項(xiàng)目 | A | B | C | D | E | F |
投資額(億元) | 5 | 2 | 6 | 4 | 6 | 1 |
利潤(rùn)(億元) | 0.55 | 0.4 | 0.6 | 0.5 | 0.9 | 0.1 |
設(shè)計(jì)一個(gè)投資方案,使投資13億元所獲利潤(rùn)大于1.6億元,則應(yīng)選的項(xiàng)目是________(只需寫出項(xiàng)目的代號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com