分析 由對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),得到f(x1)max<g(x2)max.由此能求出結(jié)果.
解答 解:∵函數(shù)f(x)=lnx+ax和g(x)=x2-2x+2,
若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),
∴f(x1)max<g(x2)max.
∵f′(x)=$\frac{1}{x}$+a,x1∈(0,+∞),
由f′(x)=0,得x=-$\frac{1}{a}$.
∴f(x1)max=f(-$\frac{1}{a}$)=ln(-$\frac{1}{a}$)-1.
∵g′(x)=2x-2,x2∈[0,1],
∴g′(x2)<0,∴g(x2)max=g(0)=0-2×0+2=2.
∴由f(x1)max<g(x2)max,得ln(-$\frac{1}{a}$)-1<2,
∴l(xiāng)n(-$\frac{1}{a}$)<lne3,
解得a<-$\frac{1}{{e}^{3}}$.
故答案為:(-∞,-$\frac{1}{{e}^{3}}$).
點評 本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意導(dǎo)數(shù)的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等級 | 不合格 | 合格 | ||
得分 | [20,40) | [40,60) | [60,80) | [80,100] |
頻數(shù) | 6 | a | 24 | b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | 1 | 2 | 3 |
P | a | b | c |
A. | 0 | B. | 1 | ||
C. | 2 | D. | 無法確定,與a,b有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$-2 | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\sqrt{3}$+1 | D. | 2$\sqrt{3}$+2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com