精英家教網 > 高中數學 > 題目詳情

如圖所示,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一半徑為90米的扇形草地,P是弧TS上一點,其余部分都是空地.現開發(fā)商想在空地上建造一個有兩邊分別落在BC和CD上的長方形停車場PQCR.

   (I)設,長方形PQCR的面積為S,試建立S關于α的函數關系式;

   (II)當α為多少時,S最大,并求最大值.

解:(I)

                                      

                         

   (II)設       

           

                   

答:當

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一個半徑為90米的扇形小山,P是弧TS上一點,其余都是平地.現要在平地上建造矩形停車場PQCR,求停車場PQCR的最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=x(cm).
(1)若廣告商要求包裝盒側面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數學 來源: 題型:

11、如圖所示,ABCD是一個平面圖形的斜二側直觀圖,則該圖形是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,ABCD是一平面圖形的水平放置的斜二側直觀圖.在斜二側直觀圖中,ABCD是一直角梯形,AB∥CD,AD⊥CD,且BC與y軸平行.若AB=6,AD=2,則這個平面圖形的實際面積為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示,ABCD是空間四邊形,E、F、G、H分別是四邊上的中點,并且AC⊥BD,AC=m,BD=n,則四 邊形EFGH的面積為
 

查看答案和解析>>

同步練習冊答案