12.用數(shù)學(xué)歸納法證明:1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n>1,n∈N*),在第二步證明從n=k到n=k+1成立時(shí),左邊增加的項(xiàng)數(shù)是$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.

分析 分別把n=k和n=k+1代入不等式左邊,比較兩式即可得出結(jié)論.

解答 解:n=k時(shí),不等式左邊為1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$,
當(dāng)n=k+1時(shí),不等式左邊為1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$,
故增加的項(xiàng)為:$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.
故答案為:$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法的步驟,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)M為正方體ABCD-A1B1C1D1的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)N為B1C1上一點(diǎn),NC1=2NB1,DM⊥BN,若球O的體積為9$\sqrt{2}$π,則動(dòng)點(diǎn)M的軌跡的長度為$\frac{3\sqrt{30}}{5}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.四根繩子上共掛有10只氣球,繩子上的球數(shù)依次為1,2,3,4,每槍只能打破一只球,而且規(guī)定只有打破下面的球才能打上面的球,則將這些氣球都打破的不同打法數(shù)是12600.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=-x(x-a)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)單調(diào)區(qū)間;
(2)求函數(shù)f(x)在x∈[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知數(shù)列{an}的前n項(xiàng)和Sn=2n2-3n+1,求{an}的通項(xiàng)an;
(2)在等差數(shù)列{an}中,a1=-3,11a5=5a8,求前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知0<β<$\frac{π}{4}$<α<$\frac{3π}{4}$,cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)為F(c,0)且a>b>c>0,設(shè)短軸的兩端點(diǎn)為D,H,原點(diǎn)O到直線DF的距離為$\frac{\sqrt{3}}{2}$,過原點(diǎn)和x軸不重合的直線與橢圓E相交于C,G兩點(diǎn),且|$\overrightarrow{GF}$|+|$\overrightarrow{CF}$|=4.
(1)求橢圓E的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)P(0,1)的動(dòng)直線與橢圓E交于A,B兩點(diǎn),是否存在常數(shù)λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值?求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求證:
(1)a2+b2+c2≥ab+bc+ac
(2)$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在極坐標(biāo)系中,已知點(diǎn)$A(4,\frac{π}{4})$,直線為$ρsin(θ+\frac{π}{4})=1$.
(1)求點(diǎn)$A(4,\frac{π}{4})$的直角坐標(biāo)與直線的普通方程;
(2)求點(diǎn)$A(4,\frac{π}{4})$到直線$ρsin(θ+\frac{π}{4})=1$的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案