17.下列命題正確的是( 。
A.若x≥10,則x>10B.若x2≥25,則x≥5C.若x>y,則x2≥y2D.若x2≥y2,則|x|≥|y|

分析 A.舉出反例x=10,可判斷A的真假;
B.根據(jù)不等式的關(guān)系進行判斷當(dāng)x≤-5時,結(jié)論不成立.
C.舉出反例,當(dāng)x=1,y=-1時,根據(jù)不等式的關(guān)系進行判斷.
D.根據(jù)絕對值和平方的性質(zhì),進行判斷即可.

解答 解:A.當(dāng)x=10時,滿足x≥10,但x>10不成立,故A錯誤,
B.由x2≥25得x≥5或x≤-5,則x≥5不一定成立,故B錯誤,
C.當(dāng)x=1,y=-1時,滿足x>y,但x2≥y2不成立,故C錯誤,
D.若x2≥y2,則|x|2≥|y|2成立,則|x|≥|y|成立,故D正確
故選:D

點評 本題主要考查命題的真假判斷,根據(jù)不等式的性質(zhì)和關(guān)系分別進行判斷是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓C:x2+y2-2x-4y+1=0上存在兩點關(guān)于直線l:x+my+1=0對稱,經(jīng)過點M(m,m)作圓的兩條切線,切點分別為P,Q,則|PQ|=( 。
A.3B.$2\sqrt{3}$C.$\sqrt{13}$D.$\frac{{12\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在四棱錐P-ABCD中,PB⊥底面ABCD,底面ABCD是邊長為2的正方形,若直線PC與平面PDB所成的角為30°,則四棱錐P-ABCD的外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{x}{1-x}$的單調(diào)增區(qū)間是( 。
A.(-∞,1)B.(1,+∞)C.(-∞,1),(1,+∞)D.(-∞,-1),(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是$\frac{π}{2}$,若將f(x)的圖象先向右平移$\frac{π}{6}$個單位,再向上平移$\sqrt{3}$個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;     
 (2)求f(x)的對稱軸及單調(diào)區(qū)間;
(3)若對任意x∈[0,$\frac{π}{3}}$],f2(x)-(2+m)f(x)+2+m≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的四位數(shù).
(Ⅰ)可以組成多少個不同的四位數(shù)?
(Ⅱ)若四位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則這樣的四位數(shù)有多少個?
(Ⅲ)將(I)中的四位數(shù)按從小到大的順序排成一數(shù)列,問第85項是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=$\sqrt{x(x-1)}$+$\frac{1}{{\sqrt{x}}}$的定義域是(  )
A.{x|x≥0}B.{x|x≥1}C.{x|x>0}∪{0}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=asin(x+$\frac{π}{3}$)-b(a>0)的最大值為2,最小值為0.
(1)求a、b的值;
(2)利用列表法畫出函數(shù)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知球O是某幾何體的外接球,而該幾何體是由一個側(cè)棱長為2$\sqrt{5}$的正四棱錐S-ABCD與一個高為6的正四棱柱ABCD-A1B1C1D1拼接而成,則球O的表面積為( 。
A.$\frac{100π}{3}$B.64πC.100πD.$\frac{500π}{3}$

查看答案和解析>>

同步練習(xí)冊答案