【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)M的極坐標(biāo)為,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若N是曲線C上的動(dòng)點(diǎn),P為線段MN的中點(diǎn),求點(diǎn)P到直線l的距離的最大值.
【答案】(1)x-y-4=0,C:;(2)
【解析】
(1)直接利用極坐標(biāo)方程、參數(shù)方程和普通方程互化的公式求直線l的直角坐標(biāo)方程與曲線C的普通方程;(2)設(shè)N(,sinα),α∈[0,2π).先求出點(diǎn)P到直線l的距離再求最大值.
(1)因?yàn)橹本l的極坐標(biāo)方程為,
即ρsinθ-ρcosθ+4=0.由x=ρcosθ,y=ρsinθ,
可得直線l的直角坐標(biāo)方程為x-y-4=0.
將曲線C的參數(shù)方程消去參數(shù)a,
得曲線C的普通方程為.
(2)設(shè)N(,sinα),α∈[0,2π).
點(diǎn)M的極坐標(biāo)(,),化為直角坐標(biāo)為(-2,2).
則.
所以點(diǎn)P到直線l的距離,
所以當(dāng)時(shí),點(diǎn)M到直線l的距離的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,,二面角為,為的中點(diǎn),點(diǎn)在上,且
(1)求證:四邊形為直角梯形;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與拋物線交于兩點(diǎn),線段的垂直平分線與直線交于點(diǎn),當(dāng)為拋物線上位于線段下方(含)的動(dòng)點(diǎn)時(shí),則面積的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.
(1)求實(shí)數(shù)a的值;
(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是
A. 棱柱的側(cè)面都是平行四邊形
B. 所有面都是三角形的多面體一定是三棱錐
C. 用一個(gè)平面去截正方體,截面圖形可能是五邊形
D. 將直角三角形繞其直角邊所在直線旋轉(zhuǎn)一周所得的幾何體是圓錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.
(1)求證:EF∥平面PAB;
(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為別為F1、F2,且過點(diǎn)和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)A為橢圓上一位于x軸上方的動(dòng)點(diǎn),AF2的延長線與橢圓交于點(diǎn)B,AO的延長線與橢圓交于點(diǎn)C,求△ABC面積的最大值,并寫出取到最大值時(shí)直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機(jī)樣本數(shù)據(jù),如下表:
(年齡/歲) | 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
(脂肪含量/%) | 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:
(i)求;
(i)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.
(2)若關(guān)于的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量.
附:參考數(shù)據(jù):,,,,,,
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展業(yè)務(wù),某調(diào)研組對,兩個(gè)公司的產(chǎn)品需求量進(jìn)行調(diào)研,準(zhǔn)備從國內(nèi)個(gè)人口超過萬的超大城市和()個(gè)人口低于萬的小城市隨機(jī)抽取若干個(gè)進(jìn)行統(tǒng)計(jì),若一次抽取個(gè)城市,全是小城市的概率為.
(1)求的值;
(2)若一次抽取個(gè)城市,則:①假設(shè)取出小城市的個(gè)數(shù)為,求的分布列和期望;
②若取出的個(gè)城市是同一類城市,求全為超大城市的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com