【題目】如圖,在四棱錐中,底面為等腰梯形, , , , 分別為線段, 的中點(diǎn).
(1)證明: 平面;
(2)若平面, ,求四面體的體積.
【答案】(1)見解析;(2).
【解析】試題分析:(1)由線面平行的判定定理證明得到;(2)以為底面,點(diǎn)F到的距離為高,由于F為PB 的中點(diǎn),所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離的一半,算出體積。
試題解析:(1)證明:連接、, 交于點(diǎn),
∵為線段的中點(diǎn), , ,∴
∴四邊形為平行四邊形,
∴為的中點(diǎn),又是的中點(diǎn),
∴,
又平面, 平面,
∴平面.
(2)解法一:由(1)知,四邊形為平行四邊形,∴ ,
∵四邊形為等腰梯形, , ,
∴,∴三角形是等邊三角形,∴,
做于,則,
∵平面, 平面,∴平面平面,
又平面平面, , 平面,
∴平面,∴點(diǎn)到平面的距離為,
又∵為線段的中點(diǎn),∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離的一半,即,又,
∴ .
解法二: , 平面, 平面,∴平面,
∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離,
做于點(diǎn),由,知三角形是等邊三角形,∴,
∵平面, 平面,∴平面平面,
又平面平面, , 平面,
∴平面,∴點(diǎn)到平面的距離為,
又為線段的中點(diǎn),∴ ,
∴ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,已知平面PAD,,,E為棱PC上的一點(diǎn),經(jīng)過A,B,E三點(diǎn)的平面與棱PD相交于點(diǎn)F.
求證:平面PAD;
求證:;
若平面平面PCD,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如圖數(shù)陣的表格形式,表格內(nèi)是按某種規(guī)律排列成的有限個正整數(shù).
(1)記第一行的自左至右構(gòu)成數(shù)列,是的前項(xiàng)和,試求的表達(dá)式;
(2)記為第行與第列交點(diǎn)的數(shù)字,觀察數(shù)陣,若,試求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x∈R|x2-ax+b=0},B={x∈R|x2+cx+15=0},A∩B={3},A∪B={3,5}.
(1)求實(shí)數(shù)a,b,c的值;
(2)設(shè)集合P={x∈R|ax2+bx+c≤7},求集合P∩Z.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn),平行于的直線在軸上的截距為,直線交橢圓于兩個不同點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在拋物線: 上,直線: 與拋物線交于, 兩點(diǎn),且直線, 的斜率之和為-1.
(1)求和的值;
(2)若,設(shè)直線與軸交于點(diǎn),延長與拋物線交于點(diǎn),拋物線在點(diǎn)處的切線為,記直線, 與軸圍成的三角形面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是雙曲線C:的左,右焦點(diǎn),O是坐標(biāo)原點(diǎn)過作C的一條漸近線的垂線,垂足為P,若,則C的離心率為
A. B. 2 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且.
(1)求雙曲線的兩條漸近線的夾角;
(2)過點(diǎn)的直線和雙曲線的右支交于、兩點(diǎn),求的面積的最小值;
(3)過雙曲線上任意一點(diǎn)分別作該雙曲線兩條漸近線的平行線,它們分別交兩條漸近線于、兩點(diǎn),求平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為利于分層教學(xué),某學(xué)校根據(jù)學(xué)生的情況分成了A,B,C三類,經(jīng)過一段時間的學(xué)習(xí)后在三類學(xué)生中分別隨機(jī)抽取了1個學(xué)生的5次考試成緞,其統(tǒng)計(jì)表如下:
A類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 145 | 83 | 95 | 72 | 110 |
,;
B類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 85 | 93 | 90 | 76 | 101 |
,;
C類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 85 | 92 | 101 | 100 | 112 |
,;
(1)經(jīng)計(jì)算己知A,B的相關(guān)系數(shù)分別為,.,請計(jì)算出C學(xué)生的的相關(guān)系數(shù),并通過數(shù)據(jù)的分析回答抽到的哪類學(xué)生學(xué)習(xí)成績最穩(wěn)定;(結(jié)果保留兩位有效數(shù)字,越大認(rèn)為成績越穩(wěn)定)
(2)利用(1)中成績最穩(wěn)定的學(xué)生的樣本數(shù)據(jù),已知線性回歸直線方程為,利用線性回歸直線方程預(yù)測該生第十次的成績.
附相關(guān)系數(shù),線性回歸直線方程,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com