【題目】已知函數(shù)f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一個正整數(shù),則實數(shù)k的取值范圍為 ( )
A. [ ,)B. (,]
C. [)D. [)
【答案】A
【解析】
把f(x)<0轉(zhuǎn)化為(kx+)ex<2x,即kx+< ,令g(x)=,利用導數(shù)研究g(x)的單調(diào)性,數(shù)形結(jié)合得答案.
由f(x)<0的解集中有且只有一個正整數(shù),得(kx+)ex<2x,即kx+< 有且只有一個正整數(shù),令g(x)=,則g′(x)=,當x∈(﹣∞,1)時,g′(x)>0,當x∈(1,+∞)時,g′(x)<0.∴g(x)在(﹣∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.作出函數(shù)g(x)與y=kx+的圖象如圖所示,y=kx+的圖象過定點P(0,),A(1,),B(2,),∵ ,.∴實數(shù)k的取值范圍為[ ,).
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動點與點的距離和它到直線的距離相等,記點的軌跡為曲線
(1)求曲線的方程
(2)設點,動點在曲線上運動時,的最短距離為,求的值以及取到最小值時點的坐標
(3)設為曲線的任意兩點,滿足(為原點),試問直線是否恒過一個定點?如果是,求出定點坐標;如果不是,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+2|x+1|.
(1)當a=2時,解不等式f(x)>4.
(2)若不等式f(x)<3x+4的解集是{x|x>2},求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三角形ABC中,,D是垂足,則推廣到空間,三棱錐中,面面,O為垂足,且O在三角形BCD內(nèi),則類似的結(jié)論為___________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足: , , .
(1)求數(shù)列的通項公式;
(2)設數(shù)列的前項和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;
(3)將數(shù)列中的部分項按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個滿足條件的無窮等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,,是橢圓上關于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明直線與軸相交于定點;
(Ⅲ)在(Ⅱ)的條件下,過點的直線與橢圓交于,兩點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com