如圖,在以點為圓心,為直徑的半圓中,,是半圓弧上一點,,曲線是滿足為定值的動點的軌跡,且曲線過點.
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線的方程;
(Ⅱ)設(shè)過點的直線l與曲線相交于不同的兩點、
若△的面積不小于,求直線斜率的取值范圍.
(Ⅰ)(Ⅱ) [-,-1]∪(-1, 1)∪(1,).
【解析】(I)先建系,然后根據(jù)為定值,可確定點M的軌跡是雙曲線,
然后按照求雙曲線標準方程的方法求解即可.
(II) 先設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理得(1-k2)x2-4kx-6=0.
根據(jù)條件可知 ,從而得到k的取值范圍.
再利用弦長公式和韋達定理用k表示出|EF|,再利用點到直線的距離公式求出原點O到直線l的距離,從而表示出三角形的面積,這樣三角形的面積就表示成了關(guān)于k的函數(shù),
再根據(jù),得到關(guān)于k的不等式,從而解出k的取值范圍,再與前面k的取值范圍求交集即可.
(Ⅰ)解法1:以O(shè)為原點,AB、OD所在直線分別為x軸、y軸,建立平面直角坐標系,則A(-2,0),B(2,0),D(0,2),P(),依題意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲線C是以原點為中心,A、B為焦點的雙曲線.
設(shè)實平軸長為a,虛半軸長為b,半焦距為c,
則c=2,2a=2,∴a2=2,b2=c2-a2=2.∴曲線C的方程為.
解法2:同解法1建立平面直角坐標系,則依題意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.
∴曲線C是以原點為中心,A、B為焦點的雙曲線.
設(shè)雙曲線的方程為>0,b>0).
則由解得a2=b2=2,∴曲線C的方程為
(Ⅱ)解法1:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理得(1-k2)x2-4kx-6=0.
∵直線l與雙曲線C相交于不同的兩點E、F,
∴
∴k∈(-,-1)∪(-1,1)∪(1,).
設(shè)E(x,y),F(xiàn)(x2,y2),則由①式得x1+x2=,于是
|EF|=
=
而原點O到直線l的距離d=,
∴S△DEF=
若△OEF面積不小于2,即S△OEF,則有
③
綜合②、③知,直線l的斜率的取值范圍為[-,-1]∪(1-,1) ∪(1, ).
解法2:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直線l與雙曲線C相交于不同的兩點E、F,
∴
∴k∈(-,-1)∪(-1,1)∪(1,).
設(shè)E(x1,y1),F(x2,y2),則由①式得
|x1-x2|= ③
當E、F在同一去上時(如圖1所示),
S△OEF=
當E、F在不同支上時(如圖2所示).
S△ODE=
綜上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面積不小于2
、
綜合②、④知,直線l的斜率的取值范圍為[-,-1]∪(-1, 1)∪(1,).
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(湖北卷理19)如圖,在以點為圓心,為直徑的半圓中,,是半圓弧上一點,
,曲線是滿足為定值的動點的軌跡,且曲線過點.
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼担笄的方程;
(Ⅱ)設(shè)過點的直線l與曲線相交于不同的兩點、.
若△的面積不小于,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(湖北卷理19)如圖,在以點為圓心,為直徑的半圓中,,是半圓弧上一點,
,曲線是滿足為定值的動點的軌跡,且曲線過點.
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線的方程;
(Ⅱ)設(shè)過點的直線l與曲線相交于不同的兩點、.
若△的面積不小于,求直線斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com