【題目】如圖所示,在三棱錐P-ABC中,平面PAB⊥平面ABC,△ABC是邊長為的等邊三角形,,點O,M分別是AB,BC的中點.
(1)證明:AC//平面POM;
(2)求點B到平面POM的距離.
【答案】(1)證明見解析;(2)
【解析】
(1)證明直線平行平面POM內(nèi)的直線,再利用線面平行判定定理證明;
(2)作BN⊥OM,垂足為N,先證明BN⊥平面POM,得到線段BN的長即為點B到平面POM的距離,再從△BOM中求得BN的長.
(1)∵點O,M分別是AB,BC的中點,∴OM//AC.
又∵OM平面POM,AC平面POM,
∴AC//平面POM.
(2)如圖所示,作BN⊥OM,垂足為N,
∵,O是AB的中點,∴.
∵平面PAB⊥平面ABC,交線為AB,∴PO⊥平面ABC,∴PO⊥BN.
又,∴BN⊥平面POM.
∴線段BN的長即為點B到平面POM的距離.
由△ABC是等邊三角形,可得△BOM也是等邊三角形.
∵,∴,.
故點B到平面POM的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.
(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學期望;
(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.
附:若隨機變量服從正態(tài)分布,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.
(1)求的方程;
(2)設(shè)點為拋物線的焦點,當面積最小時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.
(1)求和的值;
(2)當n為偶數(shù)時,求,(用n表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.
(1)求橢圓的標準方程;
(2)設(shè)、是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),的定義域為.當時, .(e為自然對數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;
(2)如果當x≥1時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知菱形ABCD中,∠BAD=60°,AC與BD相交于點O.將△ABD沿BD折起,使頂點A至點M,在折起的過程中,下列結(jié)論正確的是( )
A.BD⊥CM
B.存在一個位置,使△CDM為等邊三角形
C.DM與BC不可能垂直
D.直線DM與平面BCD所成的角的最大值為60°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A,B關(guān)于坐標原點O對稱,,以M為圓心的圓過A,B兩點,且與直線相切,若存在定點P,使得當A運動時,為定值,則點P的坐標為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com