已知函數(shù),其中a,b∈R
(1)當(dāng)a=3,b=-1時(shí),求函數(shù)f(x)的最小值;
(2)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線方程為2x-3y-e=0(e=2.71828 為自然對(duì)數(shù)的底數(shù)),求a,b的值;
(3)當(dāng)a>0,且a為常數(shù)時(shí),若函數(shù)h(x)=x[f(x)+lnx]對(duì)任意的x1>x2≥4,總有成立,試用a表示出b的取值范圍.
(1);(2);(3)時(shí),,時(shí),
解析試題分析:(1)利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,即可求出的最小值;(2)要注意給出某點(diǎn)處的切線方程,就既有該點(diǎn)的坐標(biāo),也有該點(diǎn)出切線的斜率,利用這兩個(gè)條件可求出a與b的值;(3)解決本題的關(guān)鍵是由“對(duì)任意的x1>x2≥4,總有成立”轉(zhuǎn)化出“在上單調(diào)遞增”,從而再次轉(zhuǎn)化為導(dǎo)函數(shù)大于0的問題求解.解題過程中要注意對(duì)參數(shù)的合理分類討論.
試題解析:(1)當(dāng)a=3,b=-1時(shí),
∴
∵x>0,∴0<x<時(shí)f '(x)<0,x>時(shí),f '(x)>0
即在上單調(diào)遞減,在上單調(diào)遞增
∴在處取得最小值
即 4分
(2)∵
∴ (1)
又切點(diǎn)(e,f(e))在直線2x-3y-e=0上
∴切點(diǎn)為
∴ (2)
聯(lián)立(1)(2),解得. 8分
(3)由題意,對(duì)任意的x1>x2≥4,總有成立
令
則函數(shù)p(x)在上單調(diào)遞增
∴在上恒成立
∴在上恒成立 10分
構(gòu)造函數(shù)
則
∴F(x)在上單調(diào)遞減,在上單調(diào)遞增
(i)當(dāng),即時(shí),F(xiàn)(x)在上單調(diào)遞減,在上單調(diào)遞增
∴
∴,從而 12分
(ii)當(dāng),即時(shí),F(xiàn)(x)在(4,+∞)上單調(diào)遞增
,從而 13分
綜上,當(dāng)時(shí),,時(shí), 14分
考點(diǎn):導(dǎo)數(shù),函數(shù)的單調(diào)性,參數(shù)的取值范圍,分類與整合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),在點(diǎn)處的切線方程是(e為自然對(duì)數(shù)的底)。
(1)求實(shí)數(shù)的值及的解析式;
(2)若是正數(shù),設(shè),求的最小值;
(3)若關(guān)于x的不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是實(shí)數(shù),函數(shù).
(1)若,求的值及曲線在點(diǎn)處的切線方程.
(2)求在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象為曲線E.
(1)若a = 3,b = -9,求函數(shù)f(x)的極值;
(2)若曲線E上存在點(diǎn)P,使曲線E在P點(diǎn)處的切線與x軸平行,求a,b的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù).
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),對(duì),都有,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln(x+1)+ax2-x,a∈R.
(1)當(dāng)時(shí),求函數(shù)y=f(x)的極值;
(2)是否存在實(shí)數(shù)b∈(0,1),使得當(dāng)x∈(-1,b]時(shí),函數(shù)f(x)的最大值為f(b)?若存在,求實(shí)數(shù)a的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的圖像過原點(diǎn),且在點(diǎn)處的切線與軸平行,對(duì)任意,都有.
(1)求函數(shù)在點(diǎn)處切線的斜率;
(2)求的解析式;
(3)設(shè),對(duì)任意,都有.求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,.
(1)若的單調(diào)減區(qū)間是,求實(shí)數(shù)a的值;
(2)若對(duì)于定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)有兩個(gè)極值點(diǎn), 且.若恒成立,求m的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com