已知函數(shù),其中
為實(shí)數(shù).
(1)當(dāng)時(shí),求函數(shù)
在區(qū)間
上的最大值和最小值;
(2)若對一切的實(shí)數(shù),有
恒成立,其中
為
的導(dǎo)函數(shù),求實(shí)數(shù)
的取值范圍.
(1)在區(qū)間上最小值為
,最大值為
;(2)
.
解析試題分析:(1)當(dāng)時(shí),
,求出函數(shù)
的導(dǎo)函數(shù),判斷
在
的單調(diào)性,即可求出函數(shù)
最大值和最小值;
(2)由題目條件得:對任意的
都成立,后按
,
,
三種情況,對
進(jìn)行分類討論去絕對值,能夠求出
的取值范圍.
(1)當(dāng)
時(shí),
,
令,得
或
,
令,得
或
,
令,得
,
在
,
上單調(diào)遞增;
在
上
單調(diào)遞減;
;
;
;
.
在區(qū)間上最小值為
,最大值為
(2)由條件有:,
①當(dāng)時(shí),
.
②當(dāng)時(shí),
,即
在
時(shí)恒成立
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/69/4/1jtpk3.png" style="vertical-align:middle;" />,當(dāng)時(shí)等號成立.
所以,即
③當(dāng)時(shí),
,即
在
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).若曲線
在點(diǎn)
處的切線與直線
垂直,
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
)
(1)當(dāng)a=2時(shí),求在區(qū)間[e,e2]上的最大值和最小值;
(2)如果函數(shù)、
、
在公共定義域D上,滿足
<
<
,那么就稱
為
、
的“伴隨函數(shù)”.已知函數(shù)
,
,若在區(qū)間(1,+∞)上,函數(shù)
是
、
的“伴隨函數(shù)”,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在
內(nèi)單調(diào)遞增,求
的取值范圍;
(2)若函數(shù)在
處取得極小值,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量 (單位:千克)與銷售價(jià)格
(單位:元/千克)滿足關(guān)系式
,其中
,
為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某風(fēng)景區(qū)在一個(gè)直徑AB為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)A與圓
弧上的一點(diǎn)C之間設(shè)計(jì)為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點(diǎn)C到點(diǎn)B設(shè)計(jì)為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計(jì))
(1)設(shè)(弧度),將綠化帶總長度表示為
的函數(shù)
;
(2)試確定的值,使得綠化帶總長度最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,其中
,
為自然對數(shù)的底數(shù).
(1)若在
處的切線
與直線
垂直,求
的值;
(2)求在
上的最小值;
(3)試探究能否存在區(qū)間,使得
和
在區(qū)間
上具有相同的單調(diào)性?若能存在,說明區(qū)間
的特點(diǎn),并指出
和
在區(qū)間
上的單調(diào)性;若不能存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(1)若函數(shù)在
處取得極值,求
的值;
(2)若函數(shù)的圖象上存在兩點(diǎn)關(guān)于原點(diǎn)對稱,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對任意的,存在唯一的
,使
;
(3)設(shè)(2)中所確定的關(guān)于
的函數(shù)為
,證明:當(dāng)
時(shí),有
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com