等差數(shù)列{an}的前n項(xiàng)和記為Sn,已知a10=30,a20=50.
(1)求通項(xiàng){an};
(2)令Sn=242,求n.
考點(diǎn):數(shù)列的求和,等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的通項(xiàng)公式根據(jù)a10和a20的值建立方程組,求得a1和d,則通項(xiàng)an可得.
(2)把等差數(shù)列的求和公式代入進(jìn)而求得n.
解答: 解:(Ⅰ)由an=a1+(n-1)d,a10=30,a20=50,得
方程組
a1+9d=30
a1+19d=50
解得a1=12,d=2.所以an=2n+10.
(Ⅱ)由得由Sn=na1+
n(n-1)
2
d
,Sn=242得
方程12n+
n(n-1)
2
×2=242.
解得n=11或n=-22(舍去).
點(diǎn)評:本小題主要考查等差數(shù)列的通項(xiàng)公式、求和公式,考查運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2x-4<0},B={x|0<x<5},全集U=R,求:
(Ⅰ)A∩B;  
(Ⅱ)A∪B;   
(Ⅲ)(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
6
x-1
(x∈[2,6]),求函數(shù)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次海上聯(lián)合作戰(zhàn)演習(xí)中,紅方一艘偵察艇發(fā)現(xiàn)在北偏東45°方向,相距12n mile的水面上,有藍(lán)方一艘小艇正以每小時10n mile的速度沿南偏東75°方向前進(jìn),若偵察艇以每小時14n mile的速度,沿北偏東45°+α方向攔截藍(lán)方的小艇,若要在最短的時間內(nèi)攔截住,求紅方偵察艇所需的時間和角α的正弦值.(注:n mile是海里的英文符號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前四項(xiàng)的和A4=60,第二項(xiàng)與第四項(xiàng)的和為34,等比數(shù)列{bn}的前四項(xiàng)的和B4=120,第二項(xiàng)與第四項(xiàng)的和為90.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn,且{cn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設(shè)1件產(chǎn)品的利潤(單位:萬元)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一條生產(chǎn)線上按同樣的方式每隔30分鐘取一件產(chǎn)品,共取了n件,測得其產(chǎn)品尺寸后,畫得其頻率分布直方圖如圖所示,已知尺寸在[15,45)內(nèi)的頻數(shù)為46.

(1)該抽樣方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)內(nèi)的產(chǎn)品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x+blnx在x=1與x=2處取極值.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[
1
e
,e2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知指數(shù)函數(shù)f(x)=ax的圖象經(jīng)過點(diǎn)(3,8),則f(-1)的值為
 

查看答案和解析>>

同步練習(xí)冊答案