分析 (Ⅰ)先求出f(x)定義域?yàn)椋?,1)∪(1,+∞),$f'(x)=\frac{{\frac{x}(x-1)-(a+blnx)}}{{{{(x-1)}^2}}}$,由函數(shù)f(x)在點(diǎn) (2,f (2)) 處切線的斜率為-$\frac{1}{2}$-ln 2,且函數(shù)過點(diǎn)(4,$\frac{1+2ln2}{3}$),列出方程組求出a,b,從而$f'(x)=\frac{{\frac{1}{x}(x-1)-(1+lnx)}}{{{{(x-1)}^2}}}=\frac{{-\frac{1}{x}-lnx}}{{{{(x-1)}^2}}}$記$h(x)=-\frac{1}{x}-lnx$,則$h'(x)=\frac{1}{x^2}-\frac{1}{x}=\frac{1-x}{x^2}$,利用導(dǎo)數(shù)性質(zhì)能求出函數(shù) f (x)的單調(diào)區(qū)間.
(Ⅱ)原問題轉(zhuǎn)化為f(x)<g(x)在x∈(0,1)上恒成立,f(x)>g(x)在x∈(1,+∞)上恒成立,從而$φ(x)=1+lnx-(1-\frac{1}{x})k>0$在x∈(0,1)∪(1,+∞)上恒成立,由此利用導(dǎo)數(shù)性質(zhì)能求出k的最大值.
解答 解:(Ⅰ)∵函數(shù)f(x)=$\frac{a+blnx}{x-1}$(a,b∈R),
∴f(x)定義域?yàn)椋?,1)∪(1,+∞),
$f'(x)=\frac{{\frac{x}(x-1)-(a+blnx)}}{{{{(x-1)}^2}}}$…(1分)
∵函數(shù)f(x)在點(diǎn) (2,f (2)) 處切線的斜率為-$\frac{1}{2}$-ln 2,且函數(shù)過點(diǎn)(4,$\frac{1+2ln2}{3}$).
∴$\left\{\begin{array}{l}f'(2)=\frac{2}-a-bln2=-\frac{1}{2}-ln2\\ f(4)=\frac{a+bln4}{3}=\frac{1+2ln2}{3}\end{array}\right.$…(2分)
∴$\left\{\begin{array}{l}a+bln2-\frac{2}=\frac{1}{2}+ln2\\ a+2bln2=1+2ln2\end{array}\right.$,
∴$\left\{\begin{array}{l}a=1\\ b=1\end{array}\right.$…(3分)
∴$f'(x)=\frac{{\frac{1}{x}(x-1)-(1+lnx)}}{{{{(x-1)}^2}}}=\frac{{-\frac{1}{x}-lnx}}{{{{(x-1)}^2}}}$
記$h(x)=-\frac{1}{x}-lnx$,則$h'(x)=\frac{1}{x^2}-\frac{1}{x}=\frac{1-x}{x^2}$,
h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
h(x)≤h(1)=-1<0…(4分)
∴$f'(x)=\frac{{-\frac{1}{x}-lnx}}{{{{(x-1)}^2}}}<0$恒成立,
∴f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞減.…(5分)
(Ⅱ)由題得,原問題轉(zhuǎn)化為f(x)<g(x)在x∈(0,1)上恒成立,
f(x)>g(x)在x∈(1,+∞)上恒成立,…(6分)
即$φ(x)=1+lnx-(1-\frac{1}{x})k>0$在x∈(0,1)∪(1,+∞)上恒成立,…(7分)
$φ'(x)=\frac{1}{x}-\frac{k}{x^2}=\frac{x-k}{x^2}$,
∴φ(x)在(0,1),(1,k)上單調(diào)遞減,(k,+∞)上單調(diào)遞增,…(8分)
當(dāng)x∈(0,1)時(shí),φ(x)>φ(1)=1>0…(9分)
當(dāng)x∈(1,+∞)時(shí),φ(x)≥φ(k)=lnk-k+2,∴l(xiāng)nk-k+2>0…(10分)
記Φ(k)=lnk-k+2,則$Φ'(k)=\frac{1}{k}-1=\frac{1-k}{k}≤0$恒成立,
Φ(k)在k∈[1,+∞)上是減函數(shù),…(11分)
Φ(3)=ln3-1>0,Φ(4)=ln4-2<0,
∴k的最大值為3.…(12分)
點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,考查函數(shù)的單調(diào)區(qū)間的求法,考查實(shí)數(shù)的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)、構(gòu)造法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | -4 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{7}$ | C. | $\frac{5}{7}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com