分析 令F(x)=${e}^{\frac{x}{2}}$f(x),從而求導(dǎo)F′(x),從而由導(dǎo)數(shù)求解不等式.
解答 解:定義在R上的函數(shù)滿足f(x)+2f′(x)>0恒成立,
令F(x)=${e}^{\frac{x}{2}}$f(x),
則F′(x)=$\frac{1}{2}$${e}^{\frac{x}{2}}$[f(x)+2f′(x)]>0,
故F(x)是R上的單調(diào)增函數(shù),
而F(2)=e1f(2)=1,
故不等式exf(x)>${e}^{\frac{x}{2}}$(其中e為自然對(duì)數(shù)的底數(shù))的解集為(2,+∞);
故答案為:(2,+∞).
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及利用函數(shù)求解不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{11}$ | B. | $\frac{13}{9}$ | C. | $\frac{16}{11}$ | D. | $\frac{17}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)為奇函數(shù) | B. | 關(guān)于直線$x=\frac{π}{2}$對(duì)稱 | ||
C. | 關(guān)于點(diǎn)(π,0)對(duì)稱 | D. | 在$(-\frac{π}{6},\frac{π}{4})$上遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com