6.已知定義在R上的函數(shù)滿足f(x)+2f′(x)>0恒成立,且f(2)=$\frac{1}{e}$(e為自然對數(shù)的底數(shù)),則不等式ex•f(x)-e${\;}^{\frac{x}{2}}$>0的解集為(2,+∞).

分析 令F(x)=${e}^{\frac{x}{2}}$f(x),從而求導(dǎo)F′(x),從而由導(dǎo)數(shù)求解不等式.

解答 解:定義在R上的函數(shù)滿足f(x)+2f′(x)>0恒成立,
令F(x)=${e}^{\frac{x}{2}}$f(x),
則F′(x)=$\frac{1}{2}$${e}^{\frac{x}{2}}$[f(x)+2f′(x)]>0,
故F(x)是R上的單調(diào)增函數(shù),
而F(2)=e1f(2)=1,
故不等式exf(x)>${e}^{\frac{x}{2}}$(其中e為自然對數(shù)的底數(shù))的解集為(2,+∞);
故答案為:(2,+∞).

點評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及利用函數(shù)求解不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,則輸出S=( 。
A.$\frac{5}{11}$B.$\frac{13}{9}$C.$\frac{16}{11}$D.$\frac{17}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,且點M到兩焦點距離之和為4$\sqrt{3}$.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A,B兩點,以AB為底作等腰三角形,頂點為P(-3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線C:y2=4x的焦點為F,過F的直線l交C于A,B兩點,M為線段AB的中點,O為坐標(biāo)原點.AO、BO的延長線與直線x=-4分別交于P、Q兩點.
(Ⅰ)求動點M的軌跡方程;
(Ⅱ)連接OM,求△OPQ與△BOM的面積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=e2,g(x)=x2+ax-2a2+3a,(a∈R),記函數(shù)h(x)=g(x)•f(x).
(1)討論函數(shù)h(x)的單調(diào)性;
(2)試比較ef(x-2)與x的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=3sin(ωx+\frac{π}{3})$的最小正周期為π,將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個所得圖象對應(yīng)的函數(shù)為y=g(x),則關(guān)于函數(shù)為y=g(x)的性質(zhì),下列說法不正確的是(  )
A.g(x)為奇函數(shù)B.關(guān)于直線$x=\frac{π}{2}$對稱
C.關(guān)于點(π,0)對稱D.在$(-\frac{π}{6},\frac{π}{4})$上遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a+blnx}{x-1}$(a,b∈R)在點 (2,f (2)) 處切線的斜率為-$\frac{1}{2}$-ln 2,且函數(shù)過點(4,$\frac{1+2ln2}{3}$).
(Ⅰ)求a、b 的值及函數(shù) f (x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=$\frac{k}{x}$(k∈N*),對任意的實數(shù)x0>1,都存在實數(shù)x1,x2滿足0<x1<x2<x0,使得f(x0)=f(x1)=f(x2),求k 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等腰三角形ABC中,底邊BC=3,∠BAC=120°,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,若P是BC邊上的中點,則$\overrightarrow{AP}$•$\overrightarrow{AD}$的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{e^x}{x}$.
(1)求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)設(shè)G(x)=xf(x)-lnx-2x,證明$G(x)>-ln2-\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案