2log23+2log24=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用對數(shù)的運算法則化簡求解即可.
解答: 解:2log23+2log24=3+4=7.
故答案為:7.
點評:本題考查對數(shù)的運算法則的應(yīng)用,是基礎(chǔ)題,會考?碱}型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)y=f(x),在[0,+∞)上單調(diào)遞增,則不等式f(2x-1)<f(3)的解為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角α滿足cos(α+π)=-
1
2
,則sinα的值等于( 。
A、1
B、0
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(-2,2),
b
=(5,k).
(1)若
a
b
,求k的值;
(2)若|
a
+
b
|不超過5,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(k-1)x2+(2-k)y2=-k2+3k-2表示的軌跡為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-
ax
x+a
,其中a>1,設(shè)a1=1,an+1=ln(an+1).請證明:
3
n+2
≥an
2
n+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),我們把滿足f(x0)=kx0的實數(shù)x0叫做函數(shù)f(x)的k倍不動點,設(shè)f(x)=x2+(2a+1)x+a2+a.
(1)若f(x)在區(qū)間[0,2]有兩個相異的1倍不動點,求實數(shù)a,并求出此不動點;
(2)若對任意k≥3,f(x)都有k倍不動點,求實數(shù)a的取值范圍;
(3)設(shè)m,n(m<n)為f(x)的2倍不動點,且函數(shù)f(x)在x∈[m,n]時值域為[2m,2n],求a的取值范圍;
(4)函數(shù)f(x)在x∈[m,n](m<n)時單調(diào),且值域恰為[2m,2n],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=log0.5(10-ax),f(3)=-2.
(1)求a的值;
(2)求不等式f(x)≥0的解集;
(3)若f(x)-
1
2x
-m>0對于x∈[3,4]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知a,b均為實數(shù),用比較證明:
a2+b2
2
≥(
a+b
2
2(當且僅當a=b時等號成立);
(2)已知x>0,y>0,x+y=1,利用(1)的結(jié)論用綜合法證明:
x+
1
2
+
y+
1
2
≤2.

查看答案和解析>>

同步練習冊答案