13.計算($\sqrt{2}$-1)0-|-2|+($\frac{1}{2}$)-1-$\sqrt{(-5)^{2}}$.

分析 利用有理數(shù)指數(shù)性質(zhì)、運算法則求解.

解答 解:($\sqrt{2}$-1)0-|-2|+($\frac{1}{2}$)-1-$\sqrt{(-5)^{2}}$
=1-2+2-5
=-4.

點評 本題考查有理數(shù)指數(shù)冪化簡求值,是基礎(chǔ)題,解題時要認真審題,注意有理數(shù)指數(shù)性質(zhì)、運算法則的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=2sinx+1所表示曲線在[0,2π]范圍內(nèi)的減區(qū)間是[$\frac{π}{2}$,$\frac{3π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求$\frac{cos8°-sin7°sin15°}{sin8°+sin7°cos15°}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)y=logcos1cosx的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在直角坐標系xOy中,角α的頂點是原點,始邊與x軸正半軸重合,在其終邊上有一點(sin$\frac{17π}{12}$,cos$\frac{17π}{12}$),滿足條件的最小正角α為$\frac{13π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知不等式|x+2|+|x-2|<18的解集為A.
(1)求A;
(2)若?a,b∈A,x∈(0,+∞),不等式a+b<x$+\frac{4}{x}$+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)在區(qū)間[0,2π]上取得最大值1和最小值-1的x的值均唯一,則ω的取值范圍是[$\frac{7}{12}$,$\frac{13}{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a<0,函數(shù)f(x)=asin(2x+$\frac{π}{6}$)-a+b,當x∈[0,$\frac{π}{2}$]時,f(x)的值域為[-2,1].
(])求a、b的值;
(2)設(shè)α、β∈(0,π),且f(α)=-2,f($\frac{β}{2}$)=-$\frac{8}{5}$,求:sin(α+β),sin(5α+2β),sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b為兩個不相等的非零實數(shù),則方程ax-y+b=0與bx2+ay2=ab所表示的曲線可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案