1.求函數(shù)y=logcos1cosx的值域.

分析 利用對數(shù)函數(shù)的單調(diào)性,即可求函數(shù)y=logcos1cosx的值域.

解答 解:∵0<cos1<1,0<cosx≤1,
∴y=logcos1cosx≥0,
∴函數(shù)y=logcos1cosx的值域[0,+∞).

點評 本題考查對數(shù)函數(shù)的單調(diào)性,考查函數(shù)的值域,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.圓的方程是(x-2)2+(y-1)2=1,P是直線x+y+1=0上任意一點,經(jīng)過P作圓的切線,求切線長的最小值以及相應P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,tanBtanC=$\frac{1}{5}$,則$\frac{cosA}{cos(B-C)}$=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知x軸上有兩點A(-3,0),B(1,0),在直線l:x+y+1=0上取一點C(x,y),使得△ABC為直角三角形.求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=(x2-3x+2)lgx+2015x-2016,則f(x)的零點所在的區(qū)間是( 。
A.($\frac{1}{10}$,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.將30.4,0.43,log43按從小到大的順序排列,正確的是( 。
A.0.43<30.4<log43B.log43<0.43<30.4C.0.43<log43<30.4D.log43<30.4<0.43

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.計算($\sqrt{2}$-1)0-|-2|+($\frac{1}{2}$)-1-$\sqrt{(-5)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=tan$\frac{πx}{8}$,x∈(-4,4),則滿足不等式(a-1)log${\;}_{(\sqrt{2}+1)}$[f(a-1)+$\sqrt{{f}^{2}(a-1)+1}$]≤2的實數(shù)a的取值范圍是[-1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,$\overrightarrow$=4$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),求:
(Ⅰ)$\overrightarrow{a}$•$\overrightarrow$和|$\overrightarrow{a}$+$\overrightarrow$|的值;
(Ⅱ)$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.

查看答案和解析>>

同步練習冊答案