分析 (1)先求出導(dǎo)函數(shù)的最小值,利用曲線y=f(x)的切線斜率的最小值是-9,求出a的值即可;
(2)先求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,確定函數(shù)的單調(diào)區(qū)間可得函數(shù)f(x)的極大值和極小值.
解答 解:(1)∵f(x)=$\frac{1}{3}$x3+ax2-8x-1,
∴f′(x)=x2+2ax-8.
∴當(dāng)x=-a時,f′(x)有最小值-a2-8
由已知:-a2-8=-9,∴a2=1
∵a<0,∴a=-1;
(2)由(1)f′(x)=x2-2x-8
令f′(x)=0得x=-2或4
當(dāng)x變化時,f′(x)及f(x)的變化情況如下表:
x | (-∞,-2) | -2 | (-2,4) | 4 | (4,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 極大值 | 極小值 |
點(diǎn)評 本小題主要考查導(dǎo)數(shù)的幾何意義、極值,及運(yùn)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、一元二次不等式的解法等基礎(chǔ)知識,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
性別 專業(yè) | 非播音專業(yè) | 播音專業(yè) |
男 | 13 | 10 |
女 | 7 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com