12.下列函數(shù)中,在區(qū)間(-1,1)上為減函數(shù)的是(  )
A.y=$\frac{1}{1-x}$B.y=cosxC.y=ln(x+1)D.y=2-x

分析 根據(jù)函數(shù)單調(diào)性的定義,余弦函數(shù)單調(diào)性,以及指數(shù)函數(shù)的單調(diào)性便可判斷每個(gè)選項(xiàng)函數(shù)在(-1,1)上的單調(diào)性,從而找出正確選項(xiàng).

解答 解:A.x增大時(shí),-x減小,1-x減小,∴$\frac{1}{1-x}$增大;
∴函數(shù)$y=\frac{1}{1-x}$在(-1,1)上為增函數(shù),即該選項(xiàng)錯(cuò)誤;
B.y=cosx在(-1,1)上沒有單調(diào)性,∴該選項(xiàng)錯(cuò)誤;
C.x增大時(shí),x+1增大,ln(x+1)增大,∴y=ln(x+1)在(-1,1)上為增函數(shù),即該選項(xiàng)錯(cuò)誤;
D.$y={2}^{-x}=(\frac{1}{2})^{x}$;
∴根據(jù)指數(shù)函數(shù)單調(diào)性知,該函數(shù)在(-1,1)上為減函數(shù),∴該選項(xiàng)正確.
故選D.

點(diǎn)評(píng) 考查根據(jù)單調(diào)性定義判斷函數(shù)在一區(qū)間上的單調(diào)性的方法,以及余弦函數(shù)和指數(shù)函數(shù)的單調(diào)性,指數(shù)式的運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{2x+y-2≥0}\\{3x-y-3≤0}\end{array}\right.$,則x2+y2的取值范圍是[$\frac{4}{5}$,13].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某射手射中10環(huán)的概率為0.28,射中9環(huán)的概率為0.24,射中8環(huán)的概率為0.19,求這個(gè)射手
(1)一次射中10環(huán)或9環(huán)的概率;
(2)一次射中不低于8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.袋中裝有偶數(shù)個(gè)球,其中紅球、黑球各占一半.甲、乙、丙是三個(gè)空盒.每次從袋中任意取出兩個(gè)球,將其中一個(gè)球放入甲盒,如果這個(gè)球是紅球,就將另一個(gè)放入乙盒,否則就放入丙盒.重復(fù)上述過程,直到袋中所有球都被放入盒中,則( 。
A.乙盒中黑球不多于丙盒中黑球B.乙盒中紅球與丙盒中黑球一樣多
C.乙盒中紅球不多于丙盒中紅球D.乙盒中黑球與丙盒中紅球一樣多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(Ⅰ)求證:PD⊥平面PAB;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在點(diǎn)M,使得BM∥平面PCD?若存在,求$\frac{AM}{AP}$的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某四棱柱的三視圖如圖所示,則該四棱柱的體積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={1,3,5,7},B={x|2≤x≤5},則A∩B=( 。
A.{1,3}B.{3,5}C.{5,7}D.{1,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.化簡:$\frac{cos(α-π)sin(π+α)tan(2π+α)}{sin(-π-α)sin(2π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)P($\sqrt{3}$,$\frac{1}{2}$)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過原點(diǎn)O且斜率為$\frac{1}{2}$的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:︳MA︳•︳MB︳=︳MC︳•︳MD︳

查看答案和解析>>

同步練習(xí)冊答案