【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了50名女性和50名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖
(Ⅰ)完成下列2×2列聯(lián)表:

喜歡旅游

不喜歡旅游

合計(jì)

女性

男性

合計(jì)

(II)能否在犯錯(cuò)率不超過0.025的前提下認(rèn)為“喜歡旅游與性別有關(guān)”
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

【答案】解:(Ⅰ)根據(jù)等高條形圖,計(jì)算女性不喜歡旅游的人數(shù)為50×0.3=15,

男性不喜歡旅游的人數(shù)為50×0.5=25,填寫2×2列聯(lián)表如下:

喜歡旅游

不喜歡旅游

合計(jì)

女性

35

15

50

男性

25

25

50

合計(jì)

60

40

100

(II)根據(jù)列聯(lián)表中數(shù)據(jù),計(jì)算

K2= = ≈4.167<5.024,

對(duì)照臨界值知,不能在犯錯(cuò)率不超過0.025的前提下認(rèn)為“喜歡旅游與性別有關(guān)”


【解析】(1)根據(jù)等高條形圖,計(jì)算男、女性不喜歡旅游的人數(shù),填寫2×2列聯(lián)表即可;
(2)根據(jù)列聯(lián)表中數(shù)據(jù),計(jì)算,對(duì)照臨界值表得出結(jié)論。
【考點(diǎn)精析】本題主要考查了頻率分布直方圖的相關(guān)知識(shí)點(diǎn),需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在正四棱錐中, 為側(cè)棱的中點(diǎn), 連接相交于點(diǎn)。

(1)證明: ;

(2)證明: ;

(3)設(shè),若質(zhì)點(diǎn)從點(diǎn)沿平面與平面的表 面運(yùn)動(dòng)到點(diǎn)的最短路徑恰好經(jīng)過點(diǎn),求正四棱錐 的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在(﹣∞,+∞)上的奇函數(shù).

(1)求a的值;

(2)當(dāng)x∈(0,1]時(shí),tf(x)≥2x﹣2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著我市經(jīng)濟(jì)的快速發(fā)展,政府對(duì)民生也越來越關(guān)注. 市區(qū)現(xiàn)有一塊近似正三角形土地ABC(如圖所示),其邊長(zhǎng)為2百米,為了滿足市民的休閑需求,市政府?dāng)M在三個(gè)頂點(diǎn)處分別修建扇形廣場(chǎng),即扇形DBEDAGECF,其中、分別相切于點(diǎn)D、E,且無重疊,剩余部分(陰影部分)種植草坪. 設(shè)BD長(zhǎng)為x(單位:百米,草坪面積為S(單位:百米2).

(1)試用x分別表示扇形DAGDBE的面積,并寫出x的取值范圍;

(2)當(dāng)x為何值時(shí)草坪面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

(2)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

(1)求常數(shù)的值;

(2)設(shè),證明函數(shù)(1,+∞)上是減函數(shù);

(3)若函數(shù),且在區(qū)間[3,4]上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是A1B1上一點(diǎn),若平面EBD與平面ABCD所成銳二面角的正切值為 ,設(shè)三棱錐A﹣A1D1E外接球的直徑為a,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐A﹣BCD的所有棱長(zhǎng)均為6,點(diǎn)P在AC上,且AP=2PC,過P作四面體的截面,使截面平行于直線AB和CD,則該截面的周長(zhǎng)為( )
A.16
B.12
C.10
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax3+bx2+cx+d(a≠0)的導(dǎo)函數(shù)為f(x),a+b+c=0,且f(0)f(1)>0,設(shè)x1 , x2是方程f(x)=0的兩個(gè)根,則|x1﹣x2|的取值范圍為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案