【題目】已知函數(shù)g(x)=ax3+bx2+cx+d(a≠0)的導函數(shù)為f(x),a+b+c=0,且f(0)f(1)>0,設x1 , x2是方程f(x)=0的兩個根,則|x1﹣x2|的取值范圍為( )
A.
B.
C.
D.

【答案】A
【解析】解:由題意得:f(x)=3ax2+2bx+c,

∵x1,x2是方程f(x)=0的兩個根,故x1+x2= ,x1x2=

= ﹣4x1x2= ,

又a+b+c=0,

∴c=﹣a﹣b代入上式,

= = = + )+ ①,

又∵f(0)f(1)>0,

∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,

∵a≠0,兩邊同除以a2得:

+3 +2<0;

∴﹣2< <﹣1,代入①得 ∈[ , ),

∴|x1﹣x2|∈[ , ).

故答案為:A.

根據(jù)導函數(shù)的求法得到函數(shù)f(x),進而用a,b,c表示出,再利用a,b,c之間的關系得到的取值范圍,進而求得的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查喜歡旅游是否與性別有關,調(diào)查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調(diào)研了50名女性和50名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖
(Ⅰ)完成下列2×2列聯(lián)表:

喜歡旅游

不喜歡旅游

合計

女性

男性

合計

(II)能否在犯錯率不超過0.025的前提下認為“喜歡旅游與性別有關”
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓內(nèi)一點,直線.

(1)若圓的弦恰好被點平分,求弦所在直線的方程;

(2)若過點作圓的兩條互相垂直的弦,求四邊形的面積的最大值;

(3)若 上的動點,過作圓的兩條切線,切點分別為.證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C: 的左右焦點分別是F1 , F2 , 離心率為 ,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,連接PF1 , PF2 , 設∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點,設直線PF1 , PF2的斜率分別為k1 , k2 , 若k≠0,試證明 為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形內(nèi)作兩個互相外切的圓,同時每一個圓又與正方形的兩相鄰邊相切,當一個圓為正方形內(nèi)切圓時半徑最大,另一圓半徑最小,記其中一個圓的半徑為x,兩圓的面積之和為S,將S表示為x的函數(shù)。

求:(1)函數(shù)的解析式;

(2)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1)設函數(shù),求函數(shù)在區(qū)間上的值域

2)定義表示中較小者,設函數(shù) .

①求函數(shù)的單調(diào)區(qū)間及最值

②若關于的方程有兩個不同的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)滿足,且的最小值是.

(1)求的解析式;

(2)若關于的方程在區(qū)間上有唯一實數(shù)根,求實數(shù)的取值范圍;

(3)函數(shù),對任意都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C:ρ=2 cos(θ﹣ ).
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ) 求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:關于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案