18.已知函數(shù)f(x)=2x-a,g(x)=xex,若對(duì)任意x1∈[0,1]存在x2∈[-1,1],使f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍為[2-e,$\frac{1}{e}$].

分析 問(wèn)題轉(zhuǎn)化為函數(shù)f(x)的值域是g(x)值域的子集,分別求出f(x)和g(x)的值域,得到關(guān)于a的不等式組,解出即可.

解答 解:若對(duì)任意x1∈[0,1]存在x2∈[-1,1],使f(x1)=g(x2)成立,
則函數(shù)f(x)的值域是g(x)值域的子集,
x∈[0,1]時(shí),f(x)的值域是:[-a,2-a],
對(duì)于g(x)=xex,x∈[-1,1],
g′(x)=ex(x+1)≥0,
g(x)在[-1,1]遞增,
g(x)的值域是[-e-1,e],
∴$\left\{\begin{array}{l}{-a≥-\frac{1}{e}}\\{2-a≤e}\end{array}\right.$,解得:2-e≤a≤$\frac{1}{e}$,
故答案為:[2-e,$\frac{1}{e}$].

點(diǎn)評(píng) 本題考查子集的概念,考查一次函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x+$\frac{1}{2}$(x∈R).
(Ⅰ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時(shí),求f(x)的最大值.
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=2,sinB=2sinA,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=(x-2)ex+ax2+x,a∈R.
(1)當(dāng)$a=-\frac{1}{2}$時(shí),求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)a∈[-2,0]時(shí),f(x)<f′(x)總成立(f′(x)是f(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)任意的x,y∈R+,定義x*y=$\frac{xy}{x+y}$,則(*)滿(mǎn)足( 。
A.交換律B.結(jié)合律
C.交換律、結(jié)合律都不滿(mǎn)足D.交換律、結(jié)合律都滿(mǎn)足

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知Sn=|n-1|+2|n-2|+3|n-3|+…+10|n-10|,n∈N*,則Sn的最小值為(  )
A.108B.96C.120D.112

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值為1.
(1)試求實(shí)數(shù)m的值;
(2)求證:log2(2a+2b)-m≥$\frac{a+b}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若方程($\frac{6}{5}$)x=$\frac{1+a}{1-a}$有負(fù)數(shù)解,求a的取值范圍(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求函數(shù)y=$\sqrt{3-2x-{x}^{2}}$的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知直線2mx-y-8m-3=0和圓(x-3)2+(y+6)2=25相交于A,B兩點(diǎn),當(dāng)弦AB最短時(shí),m的值為( 。
A.-$\frac{1}{6}$B.-6C.6D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案