(1)求與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程;
(2)求過(guò)A(1,2)和B(1,10)且與直線x-2y-1=0相切的圓的方程.
考點(diǎn):圓的切線方程,直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:(1)設(shè)與直線3x+4y-7=0垂直的直線方程為4x-3y+c=0,直線4x-3y+c=0與原點(diǎn)的距離為6,即
|c|
16+9
=6
,由此能求出直線方程.
(2)設(shè)圓心為(a,b),則半徑為(a,b)到直線x-2y-1=0的距離,由此能求出圓的方程.
解答: 解:(1)設(shè)與直線3x+4y-7=0垂直的直線方程為4x-3y+c=0,
∵直線4x-3y+c=0與原點(diǎn)的距離為6,
|c|
16+9
=6
,解得c=±30,
∴與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程為:
4x-3y+30=0或4x-3y-30=0,
(2)設(shè)圓心為(a,b),則半徑為(a,b)到直線x-2y-1=0的距離,
即r=
|a-2b-1|
5

∴(a-1)2+(b-2)2=r2,(a-1)2+(b-10)2=r2
兩個(gè)方程相減得,b=6,a=-7或3,∴r2=80或20
∴圓的方程是(x+7)2+(y-6)2=80或(x-3)2+(y-6)2=20.
點(diǎn)評(píng):本題考查直線方程與圓的方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(nx-n+2)•ex,(其中n∈R,e為自然數(shù)的底數(shù))
(Ⅰ)求f(x)在[0,1]的最大值;
(Ⅱ)若函數(shù)g(x)=n2x2-13nx-30(n>1,n∈N*),當(dāng)x>0時(shí),若2f′(x)>g(x)恒成立,求最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函數(shù)F(x)=f(x)-g(x)有極值1,求a的值;
(2)若函數(shù)G(x)=
xf(x)
a
+ag(x)+
2
x
在區(qū)間[1,+∞)上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解高一女生的身高情況,某中學(xué)隨機(jī)抽取部分高一女生測(cè)量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:
組別頻數(shù)頻率
145.5-149.580.16
149.5-153.560.12
153.5-157.5140.28
157.5-161.5100.20
161.5-165.580.16
165.5-169.5mn
合計(jì)MN
(1)求出表中字母m、n、M、N所對(duì)應(yīng)的數(shù)值;
(2)畫出頻率分布直方圖;
(3)若該校高一女生有450人,試估計(jì)高一女生身高在149.5-165.5cm范圍內(nèi)有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公比為正的等比數(shù)列{an}的前n項(xiàng)和為Sn,且2a1+a2=a3,S3+2=a4
(1)求數(shù)列{an}通項(xiàng)公式;
(2)令bn=log2an,數(shù)列{
1
bnbn+1
}的前n項(xiàng)和為Tn,求使得Tn
2012
2013
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+3
+
1
x+2

(1)求函數(shù)的定義域;
(2)求f(-3),f(
2
3
)的值;
(3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(|x+3|+|x-7|)-a.
(1)當(dāng)a=1時(shí),解關(guān)于x的不等式f(x)>0;
(2)如果?x∈R,f(x)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an+1-an+1=0,數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足Sn+bn=2,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校的生物實(shí)驗(yàn)室里有一個(gè)魚缸,里面有6條魚,其中4條黑色的和2條紅色的,有位生物老師每周4天有課,每天上、下各一節(jié)課,每節(jié)課前從魚缸中任取1條魚在課上用,用后再放回魚缸.
(1)求這位生物老師在一天中上、下午所撈的魚為同色的概率;
(2)求這位生物老師一周中恰有兩天上、下午所撈得的魚為不同色的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案