分析 (1)由條件利用絕對(duì)值三角不等式求得f(x)≥|a|+|$\frac{1}{a}$|,再利用基本不等式證得|a|+|$\frac{1}{a}$|≥2,從而證得結(jié)論.
(2)f(2)<3,即|2+$\frac{1}{a}$|+|2-a|<3,再分類討論求得a的范圍,綜合可得結(jié)論.
解答 解:(1)證明:∵f(x)=|x+$\frac{1}{a}$|+|x-a|≥|(x+$\frac{1}{a}$)-(x-a)|=|a+$\frac{1}{a}$|=|a|+|$\frac{1}{a}$|≥2,
故f(x)≥2 成立.
(2)f(2)<3,即|2+$\frac{1}{a}$|+|2-a|<3,
當(dāng)a>1 時(shí),可得2+$\frac{1}{a}$+|a-2|<3,即|a-2|<1-$\frac{1}{a}$,即$\frac{1}{a}$-1<a-2<1-$\frac{1}{a}$,可得$\left\{\begin{array}{l}{a>1}\\{a-\frac{1}{a}>1}\\{a+\frac{1}{a}<3}\end{array}\right.$,
求得 $\frac{1+\sqrt{5}}{2}$<a<$\frac{3+\sqrt{5}}{2}$.
a=1 時(shí),可得|2+1|+|2-1|<3不成立,故a≠1.
0<a<1時(shí),可得 2+$\frac{1}{a}$+2-a<3,即 a-$\frac{1}{a}$>1,即 $\left\{\begin{array}{l}{0<a<1}\\{a-\frac{1}{a}>1}\end{array}\right.$,求得a∈∅.
綜上可得,$\frac{1+\sqrt{5}}{2}$<a<$\frac{3+\sqrt{5}}{2}$.
點(diǎn)評(píng) 本題主要考查絕對(duì)值三角不等式,絕對(duì)值不等式的解法,基本不等式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$或-$\frac{5}{4}$ | B. | $\frac{5}{2}$或-$\frac{5}{2}$ | C. | $\frac{5}{8}$或-$\frac{5}{8}$ | D. | $\frac{5}{16}$或-$\frac{5}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
零件數(shù) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
加工時(shí)間 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)a>0時(shí)有最大值 | B. | 當(dāng)a>1時(shí)有最小值 | ||
C. | 當(dāng)a<0時(shí)有最大值 | D. | 當(dāng)0<a<1時(shí)有最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com