A. | 1-ln2 | B. | $\sqrt{2}$(1-ln2) | C. | 2(1+ln2) | D. | $\sqrt{2}$(1+ln2) |
分析 考慮到兩曲線關(guān)于直線y=x對稱,求丨PQ丨的最小值可轉(zhuǎn)化為求P到直線y=x的最小距離,再利用導(dǎo)數(shù)的幾何意義,求曲線上斜率為1的切線方程,由點到直線的距離公式即可得到最小值.
解答 解:∵解:∵y=2ex與y=lnx-ln2互為反函數(shù),
先求出曲線y=2ex上的點到直線y=x的最小距離.
設(shè)與直線y=x平行且與曲線y=2ex相切的切點P(x0,y0).
y′=2ex,
∴2${e}^{{x}_{0}}$=1,解得x0=ln$\frac{1}{2}$=-ln2
∴y0=$2{e}^{ln\frac{1}{2}}$=1.
得到切點P(-ln2,1),到直線y=x的距離d=$\frac{|-ln2-1|}{\sqrt{2}}$=$\frac{\sqrt{2}(1+ln2)}{2}$,
丨PQ丨的最小值為2d=$\sqrt{2}$(1+ln2),
故選:D.
點評 本題主要考查了互為反函數(shù)的函數(shù)圖象的對稱性,導(dǎo)數(shù)的幾何意義,曲線的切線方程的求法,轉(zhuǎn)化化歸的思想方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4032 | B. | 4036 | C. | 4034 | D. | 4030 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 6 | C. | 30 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-2,+∞) | C. | (-∞,-$\frac{2}{3}$) | D. | (-$\frac{2}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0]∪[2,+∞) | B. | (-∞,-2]∪(0,2] | C. | (-∞,-2]∪[2,+∞) | D. | [-2,0)∪(0,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com