(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).

(Ⅰ)函數(shù)的單調(diào)遞減區(qū)間是.
(Ⅱ)的取值范圍是.
(Ⅲ)見解析。

解析試題分析:(Ⅰ).
,得,因此函數(shù)的單調(diào)遞增區(qū)間是.
,得,因此函數(shù)的單調(diào)遞減區(qū)間是.…………(4分)
(Ⅱ)依題意,.
由(Ⅰ)知,上是增函數(shù),
.
,即對于任意的恒成立.
解得.
所以,的取值范圍是.   …………………………(8分)
(Ⅲ)由(Ⅰ),
,.
.
.
又,


.
.
由柯西不等式,.
..     ……………………(14分)
考點:本題主要考查了導(dǎo)數(shù)的運算和導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用, 柯西不等式的應(yīng)用。
點評:較難題,利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法,解題時注意函數(shù)的定義域,避免出錯

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)其中,曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
設(shè)點P在曲線上,從原點向A(2,4)移動,如果直線OP,曲線及直線x=2所圍成的面積分別記為、

(Ⅰ)當(dāng)時,求點P的坐標(biāo);
(Ⅱ)當(dāng)有最小值時,求點P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)處取得極值,記點,證明:線段與曲線存在異于、的公共點;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)已知曲線y=
(1)求曲線在x=2處的切線方程;(2)求曲線過點(2,4)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)設(shè)函數(shù).
⑴ 求的極值點;
⑵ 若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.
⑶ 已知當(dāng)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),(),曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

同步練習(xí)冊答案