【題目】已知等差數(shù)列{an}滿足a22,a58

1)求{an}的通項(xiàng)公式;

2)各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,b11,b2b3a4,求{bn}的前n項(xiàng)和Tn

【答案】1an2n2.(2Tn2n1

【解析】試題分析:(1)將已知條件轉(zhuǎn)化為首項(xiàng)和公差表示,解方程組求得基本量,即可得到通項(xiàng)公式;(2)由b11,b2b3a4,解方程組可得到等比數(shù)列{bn}的首項(xiàng)和公比,代入公式可求得前n項(xiàng)和

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d

則由已知得a10,d2

∴ana1+(n1d2n2

2)設(shè)等比數(shù)列{bn}的公比為q,則由已知得qq2a4,

∵a46,∴q2q=-3

等比數(shù)列{bn}的各項(xiàng)均為正數(shù),∴q2

{bn}的前n項(xiàng)和Tn

2n1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在十一黃金周期間降價(jià)搞促銷,某超市對(duì)顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定一次購物付款總額:(1)如果不超過200元,則不予優(yōu)惠;(2)如果超過200元,但不超過500元,則按標(biāo)價(jià)給予9折優(yōu)惠;(3)如果超過500元,其中500元按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠。小張兩次去購物,分別付款168元和423元,假設(shè)她一次性購買上述同樣的商品,則應(yīng)付款額為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)ABC的頂點(diǎn)分別為,圓M是ABC的外接圓,直線的方程是,

(1)求圓M的方程;

(2)證明:直線與圓M相交;

(3)若直線被圓M截得的弦長為3,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分12分為了解某校學(xué)生暑期參加體育鍛煉的情況,對(duì)某班M名學(xué)生暑期參加體育鍛煉的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如下的頻率分布表與直方圖:

組別

鍛煉次數(shù)

頻數(shù)

頻率

1

2

0.04

2

11

0.22

3

16

4

15

0.30

5

6

2

0.04

[

合計(jì)

1.00

1求頻率分布表中、、及頻率分布直方圖中的值;

2求參加鍛煉次數(shù)的眾數(shù)直接寫出答案,不要求計(jì)算過程;

3若參加鍛煉次數(shù)不少于18次為及格估計(jì)這次體育鍛煉的及格率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn).若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC的三個(gè)內(nèi)角為A,B,C,m=sin B+sin C,0,n=0,sin A

|m|2-|n|2=sin Bsin C

1求角A的大小

2求sin B+sin C的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對(duì)上網(wǎng)流量的需求越來越大。某電信運(yùn)營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機(jī)抽取50個(gè)用戶按年齡分組進(jìn)行訪談,統(tǒng)計(jì)結(jié)果如下表.

組號(hào)

年齡

訪談人數(shù)

愿意使用

1

[20,30)

5

5

2

[30.40)

10

10

3

[40.50)

15

12

4

[50.60)

14

8

5

[60,70)

6

2

(1)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取15人,則各組應(yīng)分別抽取多少人?

(2)若從第5組的被調(diào)查者訪談人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.

(3)按以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以50歲為分界點(diǎn),能否在犯錯(cuò)誤不超過1%的前提下認(rèn)為是否愿意選擇此款“流量包”套餐與人的年齡有關(guān);

/table>

參考公式:,其中.

年齡不低于50歲的人數(shù)

年齡低于50歲的人數(shù)

合計(jì)

愿意使用的人數(shù)

不愿意使用的人數(shù)

合計(jì)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=是奇函數(shù),且f(2)=.

(1)求實(shí)數(shù)mn的值;

(2)判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定義域;

(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案