函數(shù)f(x)=-x3+3x2在[-1,1]上的最大、小值分別為M和m,則
M
m
f(x)dx=
 
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)求出函數(shù)的最大值和最小值,然后利用函數(shù)的積分公式即可得到結(jié)論.
解答: 解:函數(shù)的導(dǎo)數(shù)為f′(x)=-3x2+6x,
由f′(x)=-3x2+6x=0得x=0或2,
∵x∈[-1,1],
∴f′(x)=-3x2+6x=0的根為x=0.
當(dāng)x∈(-1,0)時(shí)f′(x)<0,此時(shí)函數(shù)單調(diào)遞減,
當(dāng)x∈(0,1)時(shí)f′(x)>0.此時(shí)函數(shù)單調(diào)遞增,
∴x=0時(shí),f(x)取極小值f(0)=0.
又f(-1)=4,f(1)=2
∴最大值M=4,最小值m=0,
M
m
f(x)dx=
4
0
(-x3+3x2)dx=(-
1
4
x4+x3
)|
4
0
=0,
故答案為:0
點(diǎn)評(píng):本題主要考查積分的計(jì)算,利用導(dǎo)數(shù)求出函數(shù)的最值是解決本題的關(guān)鍵,要求熟練掌握函數(shù)的積分公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為
3
-1,離心率e=
3
3

(1)求橢圓E的方程;
(2)若直線l:y=x+m交E于P、Q兩點(diǎn),點(diǎn)M(1,0),問是否存在m,使
MP
MQ
?若存在求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,點(diǎn)p是單位圓上位于第一象限的動(dòng)點(diǎn),過p作x軸的垂線與射線y=xtanθ(x≥0,0<θ<
π
2
)交于點(diǎn)Q,與x軸交于點(diǎn)M,射線與單位圓交于N,設(shè)∠MOP=α,且α∈(0,θ)
(1)若θ=
π
3
,sinα=
3
5
,求cos∠POQ;
(2)若θ=
π
4
,求四邊形OMPN面積的最大值,
(3)并求取最大值時(shí)的α值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
sinα-cosα
sinα+cosα
=3,則tan2α等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中
①函數(shù)f(x)=
1
x
在定義域內(nèi)為單調(diào)遞減函數(shù);
②已知定義在R上周期為4的函數(shù)f(x)滿足f(2-x)=f(2+x),則f(x)一定為偶函數(shù);
③若f(x)為奇函數(shù),則
a
-a
f(x)dx=2
a
0
f(x)dx(a>0);
④已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0),則a+b+c=0是f(x)有極值的充分不必要條件;
⑤已知函數(shù)f(x)=x-sinx,若a+b>0,則f(a)+f(b)>0.
其中正確命題的序號(hào)為
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
2x-y≥0
x+y-2≥0
x≤3
,且z=ax+y取最小值的最優(yōu)解有無窮多個(gè),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lg5•lg8000+(lg2 
3
2+eln1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-1
的定義域?yàn)锳,函數(shù)y=lg(2-x)的定義域?yàn)锽,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=(
1
3
 log23,b=(
1
3
 log54,c=3ln3,則a,b,c的大小關(guān)系是(  )
A、c>a>b
B、c>b>a
C、a>b>c
D、a>c>b

查看答案和解析>>

同步練習(xí)冊(cè)答案