4.已知集合A={x|x2-3x+2<0},B={x|log4x>$\frac{1}{2}$},則( 。
A.A⊆BB.B⊆AC.A∩∁RB=RD.A∩B=∅

分析 分別求出A與B中不等式的解集,確定出A與B,即可做出判斷.

解答 解:∵A={x|x2-3x+2<0}={x|1<x<2},B={x|log4x>$\frac{1}{2}$}={x|x>2},
∴A∩B=∅,
故選:D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)數(shù)列{an}滿足:a1=1,a2=3,且2nan=(n-1)an-1+(n+1)an+1,則a20的值是( 。
A.4$\frac{1}{5}$B.4$\frac{2}{5}$C.4$\frac{3}{5}$D.4$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,若A=30°,cosB=-$\frac{4}{5}$,b=6,則a=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)i是虛數(shù)單位,復(fù)數(shù)$\frac{4i}{1+i}$=( 。
A.2-2iB.-2-2iC.-2+2iD.2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若輸出的S等于$\frac{8}{9}$,則輸入的N為( 。
A.8B.9C.10D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知2a=3b=m,ab≠0且a,ab,b成等差數(shù)列,則m=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)y=f(x)的圖象與y=2x+a的圖象關(guān)于y=-x+1對(duì)稱,且f(-3)+f(-7)=1,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.我們把由半橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(x≥0)與半橢圓$\frac{{y}^{2}}{^{2}}+\frac{{x}^{2}}{{c}^{2}}=1$(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2分別是“果圓”與x,y軸的交點(diǎn).
(1)若△F0F1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
(2)當(dāng)|A1A2|>|B1B2|時(shí),求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線a?平面α,直線b?平面β,α⊥β,則“a⊥b”是“a⊥β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案