9.已知2a=3b=m,ab≠0且a,ab,b成等差數(shù)列,則m=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.6

分析 易知a=log2m,b=log3m,2ab=a+b,從而可得logm2+logm3=logm6=2,從而解得.

解答 解:∵2a=3b=m,
∴a=log2m,b=log3m,
∵a,ab,b成等差數(shù)列,
∴2ab=a+b,
∵ab≠0,
∴$\frac{1}{a}$+$\frac{1}$=2,
∴$\frac{1}{a}$=logm2,$\frac{1}$=logm3,
∴l(xiāng)ogm2+logm3=logm6=2,
解得m=$\sqrt{6}$.
故選 C

點(diǎn)評 本題考查了指數(shù)與對數(shù)的運(yùn)算的應(yīng)用及等差數(shù)列的性質(zhì)應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四邊形ABCD中,∠ABC=∠ADC=90°,DF⊥AC于點(diǎn)E,交AB于點(diǎn)F.求證:AB•DF=AD•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$\overrightarrow{a}$、$\overrightarrow$不平行,且$\overrightarrow{a}$•$\overrightarrow$≠0,且$\overrightarrow{c}$=$\overrightarrow{a}$-($\frac{\overrightarrow{a}•\overrightarrow{a}}{\overrightarrow{a}•\overrightarrow}$)$\overrightarrow$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$夾角為( 。
A.0B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞增區(qū)間為(  )
A.(kπ+$\frac{3}{4}$π,kπ+$\frac{7}{4}$π),k∈ZB.(kπ+$\frac{π}{4}$,kπ+$\frac{5π}{4}$),k∈Z
C.(2kπ+$\frac{π}{4}$,2kπ+$\frac{5}{4}$π),k∈ZD.(2k+$\frac{3}{4}$π,2k+$\frac{7}{4}$π),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x2-3x+2<0},B={x|log4x>$\frac{1}{2}$},則(  )
A.A⊆BB.B⊆AC.A∩∁RB=RD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸出的S為$\frac{11}{12}$,則判斷框中填寫的內(nèi)容可以是( 。
A.n<5B.n<6C.n≤6D.n<9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)命題P:?x0∈(0,+∞),${3^{x_0}}$<$x_0^3$,則命題¬p為?x∈(0,+∞),3x≥x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|0≤x≤4},B={0,1,2},則A∩B中的元素個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)A(1,0),點(diǎn)B為圓x2+y2=2014上的任意一點(diǎn),設(shè)AB的中垂線l與OB的交點(diǎn)為C,則點(diǎn)C的軌跡方程為$\frac{{4{{({x-\frac{1}{2}})}^2}}}{2014}+\frac{{4{y^2}}}{2013}=1$.

查看答案和解析>>

同步練習(xí)冊答案