分析 (Ⅰ)以A為原點(diǎn),AN為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能證明AB⊥MN.
(Ⅱ)過(guò)河卒子 同平面MNA的法向量,利用向量法能求出點(diǎn)P到平面NMA的距離.
解答 證明:(Ⅰ)∵在三棱錐P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M為PB的中點(diǎn),N在BC上,且AN=BN,
∴AN、AC、AP兩兩垂直,
以A為原點(diǎn),AN為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系,
A(0,0,0),B($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0),P(0,0,1),M($\frac{\sqrt{3}}{4}$,-$\frac{1}{4}$,$\frac{1}{2}$),N($\frac{\sqrt{3}}{3}$,0,0),
∴$\overrightarrow{AB}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0),$\overrightarrow{MN}$=($\frac{\sqrt{3}}{12}$,$\frac{1}{4}$,-$\frac{1}{2}$),
∴$\overrightarrow{AB}•\overrightarrow{MN}$=$\frac{1}{8}$-$\frac{1}{8}+0$=0,
∴AB⊥MN.
(Ⅱ)∵∠ABC=30°,△NMA的面積為$\frac{\sqrt{15}}{24}$時(shí),
∴由(Ⅰ)知$\overrightarrow{AM}$=($\frac{\sqrt{3}}{4}$,-$\frac{1}{4}$,$\frac{1}{2}$),$\overrightarrow{AN}$=($\frac{\sqrt{3}}{3}$,0,0),$\overrightarrow{AP}$=(0,0,1),
設(shè)平面MNA的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AM}=\frac{\sqrt{3}}{4}x-\frac{1}{4}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AN}=\frac{\sqrt{3}}{3}x=0}\end{array}\right.$,取y=2,得$\overrightarrow{n}$=(0,2,1),
∴點(diǎn)P到平面NMA的距離d=$\frac{|\overrightarrow{AP}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{|1|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查異面直線垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年遼寧大連十一中高一下學(xué)期段考二試數(shù)學(xué)(文)試卷(解析版) 題型:解答題
一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.
(1)從袋中隨機(jī)取兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率;
(2)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為n,求n<m+2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年遼寧大連十一中高一下學(xué)期段考二試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知是非零向量且滿足則的夾角是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),點(diǎn)分別在的圖象上.
(1)若函數(shù)在處的切線恰好與相切,求的值;
(2)若點(diǎn)的橫坐標(biāo)均為,記,當(dāng)時(shí),函數(shù)取得極大值,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4+$\sqrt{17}$ | B. | 3+$2\sqrt{5}$ | C. | $\frac{19}{2}$ | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com