12.Rt△ABC中,斜邊BC為4,以BC中點(diǎn)為圓心,作半徑為1的圓,分別交BC于P、Q兩點(diǎn),則|AP|2+|AQ|2+|PQ|2的值為( 。
A.4+$\sqrt{17}$B.3+$2\sqrt{5}$C.$\frac{19}{2}$D.14

分析 利用余弦定理,求出|AP|2、|AQ|2,結(jié)合∠AOP+∠AOQ=180°,即可求|AP|2+|AQ|2+|PQ|2的值.

解答 解:由題意,OA=OB=2,OP=OQ=1
△AOP中,根據(jù)余弦定理AP2=OA2+OP2-2OA•OPcos∠AOP
同理△AOQ中,AQ2=OA2+OQ2-2OA•OQcos∠AOQ
因?yàn)椤螦OP+∠AOQ=180°,
所以|AP|2+|AQ|2+|PQ|2=2OA2+2OP2+PQ2=2×22+2×12+(2×1)2=14.
故選:D.

點(diǎn)評 本題考查直線與圓的位置關(guān)系的應(yīng)用,是中檔題,解題時要認(rèn)真審題,注意余弦定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知△ABC中,$\frac{AC}{BC}$=$\frac{3}{2}$,B=60°,則sinA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱錐P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M為PB的中點(diǎn),N在BC上,且AN=BN.
(Ⅰ)求證:AB⊥MN;
(Ⅱ)若∠ABC=30°,△NMA的面積為$\frac{\sqrt{15}}{24}$時,求點(diǎn)P到平面NMA的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SD=DC=2AD,側(cè)棱SD⊥底面ABCD,點(diǎn)E是SC的中點(diǎn),點(diǎn)F在SB上,且EF⊥SB.
(1)求證:SA∥平面BDE;
(2)求證SB⊥平面DEF;
(3)求二面角C-SB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,∠BAC的平分線與BC和△ABC的外接圓分別相交于D和E,延長AC交過D,E,C三點(diǎn)的圓于點(diǎn)F.
(1)求證:EC=EF;(2)若ED=2,EF=3,求AC•AF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于點(diǎn)F,若BF=FC=3,DF=FE=2.
(1)求證:AD•AB=AE•AC;
(2)求線段BC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在正方體ABCD-A1B1C1D1中,棱長為a,M、N分別是棱A1B、AC上的點(diǎn),A1M=AN.
(1)求證:MN∥平面BB1C1C;
(2)求MN的長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐O-ABCD中,∠BAD=120°,OA⊥平面ABCD,E為OD的中點(diǎn),OA=AC=$\frac{1}{2}$AD=2,AC平分∠BAD.
(1)求證:CE∥平面OAB;
(2)求四面體OACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知A(2,-5,1),B(1,-4,1),C(2,-2,4),則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊答案