(本題滿分14分)
已知函數(shù).
⑴判斷函數(shù)的奇偶性,并證明;
⑵利用函數(shù)單調(diào)性的定義證明:是其定義域上的增函數(shù).

(1)為奇函數(shù).         的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/df/9/3wzr54.gif" style="vertical-align:middle;" />,                                      
 
為奇函數(shù).                                                         
(2)
任取、,設(shè),      
  
, 又,
在其定義域R上是增函數(shù).

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地
平面,單位長(zhǎng)度為1千米,某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān),炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標(biāo)不超過多少時(shí),炮彈可以擊中它?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)集合
(1)若,求的取值范圍;
(2)求函數(shù)的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在邊長(zhǎng)為60cm的正方形鐵皮的四切去相等的正方形,再把它的邊沿虛線折起,做成一個(gè)無蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱子的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若且對(duì)任意實(shí)數(shù)均有成立,求表達(dá)式;
(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)某皮制廠去年生產(chǎn)皮質(zhì)小包的年產(chǎn)量為10萬(wàn)件,每件皮質(zhì)小包的銷售價(jià)格平均為100元,生產(chǎn)成本為80元.從今年起工廠投入100萬(wàn)元科技成本,并計(jì)劃以后每年比上一年多投入100萬(wàn)元科技成本,預(yù)計(jì)產(chǎn)量每年遞增1萬(wàn)件.設(shè)第年每件小包的生產(chǎn)成本元,若皮制產(chǎn)品的銷售價(jià)格不變,第年的年利潤(rùn)為萬(wàn)元(今年為第一年).
(Ⅰ)求的表達(dá)式
(Ⅱ)問從今年算起第幾年的利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產(chǎn)量.
(1) 將利潤(rùn)表示為月產(chǎn)量的函數(shù);
(2) 當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元(總收益=總成本+利潤(rùn)) ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)對(duì)一切實(shí)數(shù)都有成立,且.
(1)求的值。                   
(2)求的解析式。               
(3)已知,設(shè)P:當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足P成立的的集合記為,滿足Q成立的的集合記為,求為全集)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)計(jì)算下列各式的值:
(1); (2)

查看答案和解析>>

同步練習(xí)冊(cè)答案