(本題滿分12分)某皮制廠去年生產(chǎn)皮質(zhì)小包的年產(chǎn)量為10萬件,每件皮質(zhì)小包的銷售價格平均為100元,生產(chǎn)成本為80元.從今年起工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本,預計產(chǎn)量每年遞增1萬件.設第年每件小包的生產(chǎn)成本元,若皮制產(chǎn)品的銷售價格不變,第年的年利潤為萬元(今年為第一年).
(Ⅰ)求的表達式
(Ⅱ)問從今年算起第幾年的利潤最高?最高利潤為多少萬元?

解:(Ⅰ)……6分
(Ⅱ),令,故
時,不符合實際意義, ……………………………10分

故當且僅當時,最大,即第9年的利潤最高.………………………12分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
畫出函數(shù)的圖像,并指出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
已知函數(shù).
⑴判斷函數(shù)的奇偶性,并證明;
⑵利用函數(shù)單調(diào)性的定義證明:是其定義域上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若定義在R上的函數(shù)對任意的,都有成立,且當時,。
(1)求證:為奇函數(shù);  (2)求證:是R上的增函數(shù);
(3)若,解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)
已知函數(shù)(其中為常量且)的圖像經(jīng)過點.
(1)試求的值;
(2)若不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)已知函數(shù),(),若同時滿足以下條件:
在D上單調(diào)遞減或單調(diào)遞增
② 存在區(qū)間[]D,使在[]上的值域是[],那么稱()為閉函數(shù)。
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間[];若不是請說明理由;
(3)若是閉函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本題滿分12分,每小題各4分)
已知函數(shù),
(1)若函數(shù)的值域為,求實數(shù)a的值;
(2)若函數(shù)的遞增區(qū)間為,求實數(shù)a的值;       
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt∆FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=10米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=,求此時管道的長度L;
(3)問:當θ取何值時,污水凈化效果最好?
并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

醫(yī)學上為了研究傳染病在傳播的過程中病毒細胞的生長規(guī)律及其預防措施,將個病毒細胞注入到一只小白鼠的體內(nèi)進行試驗.在試驗過程中,得到病毒細胞的數(shù)量與時間的關系記錄如下表:

時間(小時)
1
2
3
4
5
6
7
病毒細胞總數(shù)(個)

2
4
8
16
32
64
已知該種病毒細胞在小白鼠體內(nèi)超過個時,小白鼠將死亡,但有一種藥物對殺死此種病毒有一定效果,用藥后,即可殺死其體內(nèi)的大部分病毒細胞.
(1)在16小時內(nèi),寫出病毒細胞的總數(shù)與時間的函數(shù)關系式;
(2)為了使小白鼠在實驗過程中不死亡,最遲應在何時注射該種藥物.(精確到整數(shù),

查看答案和解析>>

同步練習冊答案