分析 由已知求得分段函數(shù)f(x)的解析式,然后由f(x+8)≥f(x)分段得到a與x的不等關系,分離參數(shù)a求得a的范圍,取交集得答案.
解答 解:根據(jù)題意,$f(x)=\left\{\begin{array}{l}|x-{a^2}|-{a^2},x≥0\\{a^2}-|x+{a^2}|,x<0\end{array}\right.$,
當x≥0時,由f(x+8)≥f(x),得|x+8-a2|-a2≥|x-a2|-a2,
∴2x+8-2a2≥0,即a2≤x+4恒成立,
故-2≤a≤2;
當x≤-8時,由a2-|x+8+a2|≥a2-|x+a2|,得|x+8+a2|≤|x+a2|,
∴2x+8+2a2≤0,即a2≤-x-4恒成立,
故-2≤a≤2;
當-8<x<0時,由|x+8-a2|-a2≥a2-|x+a2|,得|x+8-a2|+|x+a2|≥2a2,
∴|a2-8+a2|≥2a2,解之得,$-\sqrt{2}≤a≤\sqrt{2}$,
綜上,實數(shù)a的取值范圍是:$[-\sqrt{2},\sqrt{2}]$.
故答案為:$[-\sqrt{2},\sqrt{2}]$.
點評 本題是新定義題,考查了函數(shù)解析式的求解及常用方法,訓練了利用分離變量法求解參數(shù)的取值范圍,體現(xiàn)了分類討論的數(shù)學思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[50,60) | 4 | 0.08 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.20 |
[80,90) | 16 | 0.32 |
[90,100] | ||
合計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
旋鈕所指刻度 | 起止時間 | 燃氣表讀數(shù)(m3) | ||
始 | 終 | 始 | 終 | |
5 | 0 | 8′07.60″ | 7.266 | 7.310 |
4 | 0 | 8′39.82″ | 7.310 | 7.347 |
3 | 0 | 9′54.35″ | 7.347 | 7.390 |
2 | 0 | 12′13.22″ | 7.390 | 7.451 |
旋鈕所指刻度 | 耗氣量(單位:L) | 時間(單位:s) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{5}$ | D. | -$\frac{\sqrt{2}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A | B. | -A | C. | 0 | D. | 不確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com