2.$\frac{{tan{{18}°}+tan{{42}°}+tan{{120}°}}}{{tan{{198}°}tan{{222}°}}}$=( 。
A.$-\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

分析 利用正切的兩角和與差以及誘導(dǎo)公式化簡(jiǎn)即可.

解答 解:$\frac{{tan{{18}°}+tan{{42}°}+tan{{120}°}}}{{tan{{198}°}tan{{222}°}}}$=$\frac{tan18°+tan42°+tan(180°-60°)}{tan(180°+18°)•tan(180°+42°)}$=$\frac{tan(18°+42°)(1-tan18°tan42°)-tan60°}{tan18°•tan42°}$=-tan60°=-$\sqrt{3}$.
故選A.

點(diǎn)評(píng) 本題考查了正切的兩角和與差以及誘導(dǎo)公式化簡(jiǎn)的運(yùn)用.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知拋物線y2=4x的焦點(diǎn)為F,直線l過F且依次交拋物線及圓${(x-1)^2}+{y^2}=\frac{1}{4}$于點(diǎn)A,B,C,D四點(diǎn),則4|AB|+9|CD|的最小值為$\frac{37}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長(zhǎng)軸是圓x2+y2=4的一條直徑,且右焦點(diǎn)到直線x+y-2$\sqrt{3}$=0的距離為$\frac{{\sqrt{6}}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在直線l:y=kx+m(k∈R)與橢圓C交于A,B兩點(diǎn),使得$|{2\overrightarrow{OA}+\overrightarrow{OB}}|=|{2\overrightarrow{OA}-\overrightarrow{OB}}$|成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y都是正數(shù),且xy=x+y,則4x+y的最小值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.?dāng)?shù)列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,…,$\frac{1}{m+1}$,$\frac{2}{m+1}$,…,$\frac{m}{m+1}$…的第20項(xiàng)是$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等比數(shù)列{an}的首項(xiàng)a1=2013,公比q=-$\frac{1}{2}$,數(shù)列{an}前n項(xiàng)的積記為Tn,則使得Tn取得最大值時(shí)n的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f'(x)為定義在$({0,\frac{π}{2}})$上的函數(shù)f(x)的導(dǎo)函數(shù),且cosx•f(x)<f'(x)•sinx在$({0,\frac{π}{2}})$上恒成立,則( 。
A.$\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$B.$\sqrt{2}f({\frac{π}{6}})>f({\frac{π}{4}})$C.$\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$D.$f(1)<2f({\frac{π}{6}})sin1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若關(guān)于x的函數(shù)f(x)=$\frac{a{x}^{2}+2x+{a}^{2}+sinx}{{x}^{2}+a}$,(a>0)的最大值為M,最小值為N,且M+N=8,則實(shí)數(shù)a的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義區(qū)域[x1,x2]的長(zhǎng)度為x2-x1(x2>x1),函數(shù)$f(x)=\frac{{({a^2}+a)x-1}}{{{a^2}x}}(a∈R,a≠0)$的定義域與值域都是[m,n](n>m),則區(qū)間[m,n]取最大長(zhǎng)度時(shí)實(shí)數(shù)a的值為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.-3C.1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案