設(shè)向量
a
=(
3
sinx,sinx),
b
=(cosx,sinx),x∈[0,
π
2
]
(1)若|
a
|=|
b
|,求x的值
(2)設(shè)函數(shù)f(x)=
a
b
,求f(x)的取值范圍.
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:(1)根據(jù)|
a
|=|
b
|
,就能得到關(guān)于x的方程,解方程即可.
(2)根據(jù)向量積的坐標(biāo)運算求得f(x)=
3
sinxcosx+sin2x
,根據(jù)二倍角公式,兩角差的正弦公式化簡f(x)=sin(2x-
π
6
)+
1
2
,根據(jù)x的取值,從而求出f(x)的取值范圍.
解答: 解:(1)由|
a
|=|
b
|
得:3sin2x+sin2x=cos2x+sin2x=1;
sin2x=
1
4
,∵x∈[0,
π
2
],∴sinx=
1
2
,∴x=
π
6

(2)f(x)=
3
sinxcosx+sin2x
=
3
2
sin2x-
1
2
cos2x+
1
2
=sin(2x-
π
6
)+
1
2
,
∵x∈[0,
π
2
],∴2x-
π
6
∈[-
π
6
,
6
];
sin(-
π
6
)≤sin(2x-
π
6
)≤sin
π
2

∴0≤f(x)≤
3
2
;
∴f(x)的取值范圍是[0,
3
2
].
點評:熟練掌握二倍角的正余弦公式,兩角差的正弦公式是求解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求解析式:
(1)已知f(x)為二次函數(shù),且f(2x+1)+f(2x-1)=16x2-4x+6,求f(x).
(2)已知f(
x
+1)=x+2
x
,求f(x).
(3)如果函數(shù)f(x)滿足方程f(x)+2f(-x)=x,x∈R,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項和為Sn,首項為a1,且1,an,Sn成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列滿足bn=(log2an+1)(log2an+2),求證:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,不等式組
x+y-2≥0
x-y+2≥0
x≤2
表示的平面區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是集合{a1,a2,a3,a4,a5}的兩個不同子集,使得A不是B的子集,B也不是A的子集,求不同的有序集合對(A,B)的組數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1-2x,2,
b
=(2,-1),若
a
b
,則實數(shù)x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知以F1(-2,0),F(xiàn)2(2,0)為焦點的橢圓上有點Q,三角形QF1F2的周長為4(
2
+1).一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的傾斜角分別為α,β,證明tanβ•tanα=1;
(3)設(shè)m=
1
|AB|
+
1
|CD|
,請問m是否為定值?若是,求出m的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),若存在x0∈R,使f(x0)=x0,則稱x0是函數(shù)y=f(x)的一個不動點.設(shè)二次函數(shù)f(x)=ax2+(b+1)x+(b-1).
(Ⅰ)對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若y=f(x)的圖象上A,B兩點的橫坐標(biāo)是f(x)的不動點,且A,B兩點關(guān)于直線y=kx+
1
2a2+1
對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個正方體圖形中,A、B為正方體的兩個頂點,M、N、P分別為其所在棱的中點,能得出AB∥平面MNP的圖形的序號是
 

查看答案和解析>>

同步練習(xí)冊答案