如圖,已知棱柱ABCD-A1B1C1D1的底面是正方形,且AA1⊥平面ABCD,E為棱AA1的中點(diǎn),F(xiàn)為線(xiàn)段BD1的中點(diǎn).
(1)證明:EF∥平面ABCD;
(2)證明:EF⊥平面BB1D1D.
考點(diǎn):直線(xiàn)與平面垂直的判定,直線(xiàn)與平面平行的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)根據(jù)中的找出平行線(xiàn),利用判斷定理證明.(2)利用線(xiàn)線(xiàn),線(xiàn)面,垂直的性質(zhì),判斷定理轉(zhuǎn)換求解.
解答: (1)證明:連接AC交BD與O,連接OF,
∵ABCD是 正方形
∴O是BD的中點(diǎn),BD⊥OA,
又∵F為線(xiàn)段BD1的中點(diǎn)
∴OF∥DD1且OF=
1
2
DD1

∵E為棱AA1的中點(diǎn),
∴OF∥AE且OF=AE
∴EF∥OA,
∵OA?平面ABCD,且EF?平面ABCD
∴EF∥平面ABCD
(2)證明:∵AA1⊥平面ABCD且AA1∥DD1
∴DD1⊥平面ABCD
∴DD1⊥OA
∵BD⊥OA且BD?平面BB1D1D,D1D?平面BB1D1D,BD∩1D1D=D
∴OA⊥平面BB1D1D
∵EF∥OA
∴EF⊥平面BB1D1D.
點(diǎn)評(píng):本題考查了直線(xiàn)與平面平行垂直的判斷定理,的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓以正方形ABCD的對(duì)角線(xiàn)頂點(diǎn)A、C為焦點(diǎn),且經(jīng)過(guò)各邊中點(diǎn),則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
n→∞
n2
1+2+3+…+n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在正項(xiàng)數(shù)列{an}中,Sn表示數(shù)列{an}前n項(xiàng)和且Sn=
1
4
an2+
1
2
an+
1
4
,n∈N+,數(shù)列{bn}滿(mǎn)足bn=
1
4Sn-1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(I) 求an,Sn
(Ⅱ)是否存在最大的整數(shù)t,使得對(duì)任意的正整數(shù)n均有Tn
t
36
總成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)與g(x)=(
1
2
x的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),則f(4x-x2)的單調(diào)遞增區(qū)間為( 。
A、(-∞,2)
B、(0,2)
C、(2,4)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖的程序框圖表示的算法的運(yùn)行結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠家準(zhǔn)備在2014年12月份舉行促銷(xiāo)活動(dòng),依以往的數(shù)據(jù)分析,經(jīng)測(cè)算,該產(chǎn)品的年銷(xiāo)售量x萬(wàn)件(假設(shè)該廠生產(chǎn)的產(chǎn)品全部銷(xiāo)售),與年促銷(xiāo)費(fèi)用y萬(wàn)元(0≤m≤4)近似滿(mǎn)足x=3-
k
m+1
(k為常數(shù)),如果不促銷(xiāo),該產(chǎn)品的年銷(xiāo)售量只能是1萬(wàn)件,已知2014年生產(chǎn)該產(chǎn)品的固定投入8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元.廠家將每件產(chǎn)品的銷(xiāo)售價(jià)格規(guī)定的每件產(chǎn)品生產(chǎn)平均成本的1.5倍,(產(chǎn)品生產(chǎn)平均成本指固定投入和再投入兩部分資金的平均成本).
(1)將2014年該產(chǎn)品的年利潤(rùn)y萬(wàn)元表示為年促銷(xiāo)費(fèi)用m萬(wàn)元的函數(shù);
(2)該廠家2014年的年促銷(xiāo)費(fèi)用投入為多少萬(wàn)元時(shí),該廠家的年利潤(rùn)最大?并求出最大年利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=mx2-4x+1的圖象與x軸有公共點(diǎn),則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知直線(xiàn)x+y=a與圓x2+y2=4交于A,B兩點(diǎn),且|
OA
+
OB
|=|
OA
-
OB
|其中O為坐標(biāo)原點(diǎn),求a的值;
(2)圓C的方程為(x-2)2+y2=4,圓M的方程為(x-2-5cosθ)2+(y-5sinθ)2=1,過(guò)圓M上任意一點(diǎn)P作圓C的兩條切線(xiàn)PE,PF,切點(diǎn)分別是E,F(xiàn),求
PE
PF
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案