如圖為某幾何體的三視圖,則該幾何體的表面積為( 。
A、10+
5
B、10+
2
C、6+2
2
+
6
D、6+
2
+
6
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖可知:該幾何體為一個四棱錐,如圖所示,CD⊥底面PAD,BA⊥底面PAD,PA⊥AD,PA=AD=CD=2,AB=1.即可得出.
解答: 解:由三視圖可知:該幾何體為一個四棱錐,如圖所示,CD⊥底面PAD,BA⊥底面PAD,PA⊥AD,PA=AD=CD=2,AB=1.
PC=2
3
,PB=
5
,BC=
5

∴S△PBC=
1
2
×2
3
×
2
=
6

該幾何體的表面積S=
(1+2)×2
2
+
1
2
×2×1
+
1
2
×2
2
×2
+
1
2
×2×2
+
6

=6+2
2
+
6

故選:C.
點評:本題考查了四棱錐的三視圖及其表面積的計算公式、勾股定理,考查了計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明:PA∥平面BDE;
(2)證明:AD⊥平面PDC
(3)證明:DE⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+bx+2.
(1)若f(x)在(-∞,1)上單調(diào)遞減,求實數(shù)b的取值范圍;
(2)若f(x)在區(qū)間[1,3]上最大值為8,求實數(shù)b的值;
(3)若函數(shù)g(x)的定義域為D,[p,q]⊆D,用分法T:p=x0<x1<x2<…<xn=q將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得不等式|g(x1)-g(x0)|+|g(x2)-g(x1)|+|g(x3)-g(x2)|+…+|g(xn)-g(xn-1)|≤M恒成立,則稱函數(shù)g(x)在區(qū)間[p,q]上具有性質(zhì)σ(M).試判斷當b=-2時,函數(shù)f(x)在[0,3]上是否具有性質(zhì)σ(M)?若是,求M的最小值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x2+2(a-1)x-3在[3,+∞)上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),若在定義域內(nèi)存在x0,使得f(-x0)=-f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(1)若a∈R且a≠0,證明:函數(shù)f(x)=ax2+x-a必有局部對稱點;
(2)若函數(shù)f(x)=2x+b在區(qū)間[-1,2]內(nèi)有局部對稱點,求實數(shù)b的取值范圍;
(3)若函數(shù)f(x)=4x-m•2x+1+m2-3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a=2,b-c=1,△ABC的面積為
3
,則
AB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x≥0
y≥0
3x+y≥3
,則z=x+y的最小值等于( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

《中華人民共和國個人所得稅》規(guī)定,從2011年9月1日起,修改后的個稅法將正式實施,個稅起征點從原來的2000元提高到3500元,即原先是公民全月工資、薪金所得不超過2000元的部分不必納稅,超過2000元的部分為全月應(yīng)納稅所得額,新舊稅款分別按下表分段累計計算:
 9月前稅率表
全月應(yīng)納稅所得額稅率(%)
不超過500元的部分5
超過500至2000元的部分10
超過2000元至5000元的部分15
9月及9月后稅率表
全月應(yīng)納稅所得額稅率(%)
不超過1500元的部分3
超過1500至4500元的部分10
超過4500元至9000元的部分20
張科長8月應(yīng)繳納稅款為475元,那么他9月應(yīng)繳納稅款為( 。
A、15B、145
C、250D、1200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)①y=x 
1
2
,②y=x2,③y=x3在一象限圖象如圖所示,則A,B,C分別對應(yīng)的解析式為( 。
A、①②③B、③①②
C、③②①D、①③②

查看答案和解析>>

同步練習冊答案