(本小題滿分12分)
如圖所示,在正三棱柱中,底面邊長為,側(cè)棱長為,是棱的中點(diǎn).
|
(Ⅱ)求二面角的大。籟來源:ZXXK]
(Ⅲ)求點(diǎn)到平面的距離.
解:(Ⅰ) 連結(jié)與交于,
則為的中點(diǎn),為的中點(diǎn),為的中位線,//. 又平面,平面//平面………………4分
(Ⅱ)(解法1)過作于,由正三棱柱的性質(zhì)可知,
平面,連結(jié),在正中, [來源:Zxxk.Com]
在直角三角形中,
由三垂線定理的逆定理可得.則為二面角的平面角,
又得,
,
∴.故所求二面角的大小為.………………8分
解法(2)(向量法)
建立如圖所示空間直角坐標(biāo)系,則
。
設(shè)是平面的一個(gè)法向量,則可得[來源:學(xué)?。網(wǎng)]
,所以即取
可得
又平面的一個(gè)法向量設(shè)則
又知二面角是銳角,所以二面角 的大小是……………………………………………………………………8分
(Ⅲ)設(shè)求點(diǎn)到平面的距離;因,所以,故,而………………10分
由……………12分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com