如圖X261所示,在正方體ABCD A1B1C1D1中,M,N分別是棱C1D1,C1C的中點(diǎn).給出以下四個(gè)結(jié)論:
①直線AM與直線C1C相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結(jié)論的序號為________(填入所有正確結(jié)論的序號).
圖X261
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖16,四棱錐P ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
圖16
(1)求證:AB⊥PD.
(2)若∠BPC=90°,PB=,PC=2,問AB為何值時(shí),四棱錐P ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖15,三棱柱ABC A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
圖15
(1)證明:AC=AB1;
(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A A1B1 C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在空間直角坐標(biāo)系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分別是三棱錐D ABC在xOy,yOz,zOx坐標(biāo)平面上的正投影圖形的面積,則( )
A.S1=S2=S3 B.S2=S1且S2≠S3
C.S3=S1且S3≠S2 D.S3=S2且S3≠S1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一個(gè)壇子里有編號為1,2,…,12的12個(gè)大小相同的球,其中1到6號球是紅球,其余的是黑球,若從中任取兩個(gè)球,則取到的都是紅球,且至少有1個(gè)球的號碼是偶數(shù)的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某數(shù)學(xué)老師對本校2013屆高三學(xué)生某次聯(lián)考的數(shù)學(xué)成績進(jìn)行分析,按150進(jìn)行分層抽樣抽取20名學(xué)生的成績進(jìn)行分析,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失)得到的頻率分布表如下:
分?jǐn)?shù)段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 合計(jì) |
頻數(shù) |
|
|
| b | ||
頻率 | a | 0.25 |
(1)求表中a,b的值及分?jǐn)?shù)在[90,100)范圍內(nèi)的學(xué)生人數(shù),并估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績及格率(分?jǐn)?shù)在[90,150]范圍為及格).
(2)從大于等于110分的學(xué)生中隨機(jī)選2名學(xué)生得分,求2名學(xué)生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列古典概型的說法中正確的個(gè)數(shù)是( 。
①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);
②每個(gè)事件出現(xiàn)的可能性相等;
③基本事件的總數(shù)為n,隨機(jī)事件A包含k個(gè)基本事件,則P(A)=;
④每個(gè)基本事件出現(xiàn)的可能性相等.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com